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This paper presents the non steady state model of a microdisk enzyme based biosensor where 

the enzyme reacts directly on the electrode itself. The model is based on diffusion equation containing 

a non-linear term related to Michaelis-Menten kinetics of enzymatic reaction. We have reported for the 

first time the utilization of new approaches of the homotopy perturbation method (HPM) to solve 

nonlinear partial differential equations in microdisk biosensor. Our analytical solution was also 

compared with numerical solutions and satisfactory agreement was noted. The influence of various 

parameters on the concentration are also discussed.  

 

 

Keywords: Biosensors, Mathematical model, Homotopy perturbation method, Nonlinear 

equation,Chemical sciences. 

 

1. INTRODUCTION 

The action of biosensors  can be well-defined as physical, chemical and biological sciences, 

which are modeled by  nonlinear partial differential equations [1]. These biosensors have many 

applications in different domain. Hence mathematical modeling of biosensor is highly needed. This 

will help in prefiguring various characteristics [2]. Recently, a two-dimensional mathematical models 

has been suggested considering the perforation geometry [3]. However, a simulation of the biosensor  

based on the 2-D model is more time-consuming than a simulation based on the 1-D model. Eswari 

and Rajendran [4] derived the steady state concentration and current occurring at a microdisk enzyme 

electrode. A closed-form of an analytical expression of concentration for the full range of enzyme 

kinetics has been obtained. Saravana Kumar and Rajendran [5] presented an approximate analytical 
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method (Modified Adomian decomposition method) to solve the non-linear differential equations for 

Michaelis-Menten kinetics that described the concentrations of substrates within the enzyme based 

biosensor. 

Analytical expression for the steady state current at a microdisk chemical sensor has been 

reported by Dong et al.[6] and Lyons et al.[7]. Galceran and Co-workers [8] have described the current 

at a microdisk biosensor where an enzyme is present in bulk solution. But a model for immobilized 

enzymes on microdisk had not been reported. Phanthong and Somasundrum[9]obtained the 

approximate expression of steady state concentration and current in integral form for microdisk 

biosensor when Michaelis-Menten constant  is large. 

Homotopy perturbation method (HPM) is applied to solve all nonlinear problems in physical 

and chemical sciences. The homotopy perturbation method gives a rapid convergence and accurate 

solution with few iterations [10]. To the best of our knowledge this is the first time we have 

successfully extended the application of the He’s HPM [10] to solve the nonlinear partial differential 

equation in microdisk biosensor for non steady state conditions. The obtained results confirm the 

power, simplicity and easiness of the mathematical methodology to be implemented.  

 

 

 

2. MATHEMATICAL FORMULATION OF THE PROBLEM  

 
 

Figure 1.Schematic of the problem (substrate concentration profile in immobilized enzyme in a 

spherical porous matrix)  
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We assume the polymer/enzyme droplet takes a hemispherical shape on an insulting plane, into 

which the microdisk is inlaid (Fig-1). When enzymes are immobilized on the internal surface of a 

porous spherical support, the substrate diffuses thorough the pathway among the pores, and reacts with 

the immobilized enzyme. The mathematical formulation of the microdisk biosensor is described in 

Phanthong and Somasundrum et al.[9]. It is assumed that the enzyme concentration is uniform and the 

enzyme reaction follows Michaelis-Menten kinetics, in which case the reaction in the filmis [9] 
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If the solution is stirred uniformly, so that the substrate S is constantly supplied to the film. At 

non steady state,the mass balance for S will be given by the equation (2) [9]. 
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where Sc is the concentration profile of substrate, 
Ec is the concentration profile of enzyme, SD is its 

diffusion coefficient, and  
MK is the Michaelis constant, defined as ( ) .11 kkkK catM += − Then the 

initial and boundary conditions at the electrode surface and at the film surface ( )1r are given by 

0c,0t s ==          (3) 
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where
*
Sc  is the bulk concentration of S scaled by the partition coefficient of the film.The boundary 

condition at R=0 ensures that the substrate distribution is symmetric at the center of the sphere where 

as the boundary condition at 1rR =  states that the substrate at the surface of the sphere is constant [11].
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dimensionless nonlinear equation in a biosensor can be written as follows [1,9]: 
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where u  is dimensionless concentration of substrate, andk are reaction constant. This type of 

equation (Lane Emden equation) also has been used to model several phenomenain mathematical 

physics and astrophysics [12-15] and the references cited therein. The dimensionless initial and 

boundary conditions are represented as follows [16]: 

0u,0 ==        (8) 
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3. APPROXIMATE ANALYTICAL EXPRESSION FOR THE CONCENTRATION USING  

HPM
 

A great number of problems in natural and engineering sciences have been modeled by 

nonlinear differential equations [17].Homotopy perturbation method is the recent advance methodused 

to solve manynonlinear equations [18-20]. The basic principle of this method is described in Appendix 

A. We have obtained the analytical expression of the concentration of substrate by solving the 

nonlinear equation (1)using new approach of homotopy perturbation method(Appendix B&C). 
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The above equation (11) satisfies the boundary conditions (9) and (10) whereas it satisfies the 

initial condition approximately when m>25. When m=0 or k=0 (there is no reaction) Eqn.(11) 

becomes 
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This is the well-known solution of Eqn.(7) when k=0. 

Limiting cases: 

Limiting case1: Unsaturated (first order) catalytic kinetics.  

We initially consider the major limiting situation where the substrate concentration in the film 

),r(u  is less than the Michaelis constant k. In this case the product 1u . Hence Eqn. (7) reduces to  
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Solving the above equation using the initial and boundary conditions (Eqns.(8) to (10)), we can 

obtain the concentration of substrateas follows (Appendix D): 
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The alternative form of expression of concentration for small values of  is 
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Limiting case 2: Saturated (zero order) catalytic kinetics  

Now we consider the next major limiting situation where the substrate concentration in the film 

),r(u  is greater than the Michaelis constant k. In this case    1u   and Eqn. (7) reduces to  

uk
r

u

r

2

r

uu
2

2

−



+




=






     

(17) 

Solving the above equation using HPM for the boundary conditions (8) to (10), we get the 

following expression for the concentration [21]. 

( )
( ) ( )

  


=

+− +−








+
−+=

1

22

22

1 exp
)sin(

)1(
2

sinh

sinh
),(

n

n kn
kn

rnn

rkr

rk
ru 




 (18) 

For the case of steady state the above equation becomes as follows: 
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4. NUMERICAL SIMULATION  

The nonlinear reaction diffusion equation (1) for the corresponding initial and boundary 

conditions (Eqns.(2)-(4)) are also solved numerically by using Scilab program (Appendix E). The 

numerical solutions are compared with our analytical results in Table-1 and Fig.3(b) and satisfactory 

agreement has been noted. 

 

 

Table 1. Comparison of normalized non steady-state concentration u with simulation results for 

various values of and for some other fixed values of parameters ( )1and1k ==   

 
r Concentration u 

when 05.0=  when 1.0=  when 1=  

 

Eq.(11) 

 

Simulation 

% of error 

deviation 

Eq.(11)  

Simulation 

% of error 

deviation 

 

Eq.(11) 

 

Simulation 

% of error 

deviation 

 
0 

 
0.0332 

 
0.0328 

 
1.20 

 
0.2819 

 
0.2773 
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0.9212 

 
0.9190 
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Average error % 
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Average error % 
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Average error % 
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Table 2. Comparison of normalized steady-state concentration u with simulation results for various 

values ofparameters . 

 
r 

Concentration u ( )01.0and,1k ==   
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0.8522 
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5. DISCUSSION 

Equation (11) represent the concentration profile of substrate  as a function of

andr,c,c,K,K,D 1

*

SEcatMS . In constant value of initial substrate concentration, enzymatic reaction 

rate is a function of .candK Ecat By reducing MK or increasing Ecat cK , the rate of enzymatic reaction 

increases, and consequently, the substrate’s concentration reduces in various layers of the spherical 

support. Recently Praveen et al.[22] obtained the analytical expression of concentration for steady state 

condition using ADM as follows: 
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In Table 2, our steady state result is compared with Praveen et al.[22] result and satisfactory 

agreement   is noted.
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Figure 2 Profiles of the normalized   concentration u versus dimensionless distance r  calculated using 

equation (11) for various values of parameters. 
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Figure 3.(a).Substrate concentration with respect to distance for various values of m when 1=

(b).Substrate concentration with respect to distance for various values of time  when 

1and1k ==  . 

 

5.1 Effect of the diffusion coefficient   on substrate concentration 

 

Effect of the diffusion coefficient SD  on substrate concentration is shown in the Figure 

2(a).With effective diffusivity increasing, substrate diffuses further and further in the interior layers of 

support and thus substrate profile gradient decreases when SD  increases from      

./1050/101 2626 scmtoscmDS
−− =

 

Diffusion coefficient reduction increases the difference of substrate concentration between the 

bulk medium and the center of immobilized enzyme support due to increasing of mass transport 

resistance through the immobilized enzyme. Also the substrate concentration equals to zero in the 

center of the support when scmDS /101 26−=  (see Figure 3a). 

 

5.2 Effect of Michaelis-Menten constant MK  on concentration of substrate   

The Michaelis-Menten constant is the substrate concentration, which is at half-maximum in the 

reaction rate. The value of MK  is related to the substrate, enzyme, pH and temperature. The influence 

of MK have been shown on concentration of substrate in Figure 2(b).A low value of MK  suggests that 

the enzyme has a high affinity to react with the substrate; so, the substrate's concentration should be 

decreased with reduction of Michaelis-Menten constant MK . 

 

5.3 Effect of enzyme reaction rate ( )Ecat cK on concentration of substrate   

Since enzyme reaction rate ( )Ecat cK  is dependent on concentration of enzyme not to substrate, 

so effect of maximum reaction rate on substrate profile is demonstrated in Figure2(c). With increasing 
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the value of EcatcK , concentration of substrate reduces in the porous support and thus the substrate 

profile gradient increases. Concentration profile in various values of maximum reaction rate is shown 

in Figure 2(c). In the center of the support, substrate's concentration is zero when 

./10 38 cmsmolcK Ecat

−=  

 

5.4 Effect of initial substrate concentration
*

Sc  on concentration of substrate   

Based on Fick's law, by increasing the initial concentration of substrate in the bulk medium, 

concentration profile gradient increases between the center of the support and the bulk medium, and so 

the substrate diffuses into the support more quickly. As seen in Figures 2(d), initial substrate 

concentration is effective concentration profile. Substrate concentration approaches to 0 in half radius 

of the support when 
38* /10 cmmolcs

−= , and increasing of the initial concentration increases the 

substrate concentration in the layers of matrices. 

 

5.5 Effect of radius r on concentration of substrate   

The influence of radius on concentration of substrate is described in Figure 2(e). From the 

figure it is inferred that when radius increases the concentration at the center of the sphere is also 

decreases. From this figures it is also observed that the concentrations substrate are depleted at the 

center of the microsphere (r=0) as they are consumed by the enzyme reaction. 

 

6. CONCLUSIONS 

The non-steady state concentration at a microdisk enzyme based biosensor with Michaelis-

Mentenkinitics has been discussed in some detail. Approximate analytical solution to the nonlinear 

reaction diffusion equation have been presented. In particular a novel and closed -form of 

approximation has been developed that can be used to integrate the reaction diffusion equation. The 

theoretical model presented for the non-steady state responds has been used to quantify the steady state 

substrate response profile. Good agreement was obtained between numerical and theoretical results. 

The effects of various fundamental kinetic parameters such as Michaelis-Menten constant, diffusion 

coefficients, enzyme reaction rate and bulk concentration on the concentration of substrate is 

discussed. By a proper transcription of variables, this  method will be extended to derive concentration 

at microdisk biosensor and rotating disc electrodes with convective and diffusive processes.  
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Appendix A: Basic Concepts of the HPM 

The HPM method has overcome the limitations of traditional perturbation methods. It can take 

full advantage of the traditional perturbation techniques, so a considerable deal of research has been 

conducted to apply the homotopy technique to solve various strong non-linear differentialequations. To 

explain this method, let us consider the following nonlinear differential equations: 

0)r(f)u(N)u(L =−+ (A1) 

By the homotopy technique, we construct a homotopy Rprv → ]1,0[:),(  that satisfies: 

0)]r(f)v(N[p)u(pL)u(L)v(L)p,v(H 00 =−++−= (A2) 

where ]1,0[p is an embedding parameter, and 0u is an initial approximation of Eq.(A1)that satisfies 

the boundary conditions.  

When 0=p , Eq.(A2) become linear equation. When 1=p ,they become nonlinear equation. 

The process of changing p from zero to unity is that of 0)()( 0 =− uLvL to .0)r(f)v(N)v(L =−+

We first use the embedding parameter p as a “small parameter” and assume that the solutions of 

Eqs.(A2) can be written as a power series in p: 

...vpvpvv 2

2

10 +++= (A3) 

Setting 1=p  results in the approximate solution of Eq.(A1): 
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This is the basic idea of the HPM. 

 

Appendix B: Approximate Analytical Solution Eqn.(12) using HPM Method 

We construct the new homotopy for the Eqn.(12) as follows [15]: 
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where ]1,0[p is an embedding parameter. Now assume that the solution of the Eqn. (1) is 
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Substituting the above eqn. (B2) in eqn. (B1) and equating the like coefficient of p on both side we 

obtain: 
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In Laplace plane this equation becomes:
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where
+

=
1

k
m and s is a Laplace variable. The boundary conditions become: 

0
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s

1
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The eqn. (B4) can be written as follows: 
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Where P, Q, Rare function of R. Using reduction of order, from eqn. (B1), we have 
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be the general solution of eqn. (B7).  If v is so chosen that 
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Substituting the value of P in the above eqn. (B10), we obtain: 
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Using eqn. (B8) andeqn.  B(7) reduces to: 
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Integrating eqn. (B9) twice, we obtain 
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Substituting eqn. (B7) and eqn. B(11) in eqn.(B5), we have: 
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Using the boundary conditions eqs. (B6) and (B7), we can obtain the value of the constants: 

)smsinh(s2

1
Cand

)smsinh(s2

1
C 21

+
−=

+
= (B17) 

Substituting eqn.(B17) in eqn. (B16), we obtain 















+

+
=

)smsinh(s

)rsmsinh(

r

1
)s,r(u0 (B18) 

Appendix C: Inverse Laplace Transform of Eqn. (B18) Using Complex Inversion  

Formula. 

     In this Appendix we indicate how equation (B18) may be inverted using the complex 

inversion formula. If )(sy  represents the Laplace transform of a function )(y , then according to the 

complex inversion formula we can state that: 




==
+

−
c

ic

ic

ds)s(y]sexp[
i2

1

ds)s(y]sexp[i2

1
)(y 


   (C1)

 

where the integration in equation  (C1) is to be performed along a line cs =  in the complex 

plane where .iyxs += The real number c  is chosen such that cs =  lies to the right of all the 

singularities, but is otherwise assumed to be arbitrary. In practice, the integral is evaluated by 
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considering the contour integral presented on the right-hand side of equation (C1), which is then 

evaluated using the so-called Bromwich contour. The contour integral is then evaluated using the 

residue theorem which states for any analytic function )(zF  

  ==

c n

zz 0
)]z(F[sRei2dz)z(F       (C2) 

where the residues are computed at the poles of the function ).(zF  Hence from eqn(C2),we 

note that:   

 ==
n

ss n
)]s(y]s[exp[sRe)(y         (C3) 

From the theory of complex variables we can show that the residue of a function )(zF  at a 

simple pole at az =  is given by the following equation: 

)}(){(])([Re lim zFazzFs
az

az −=
→

=     (C4) 

Hence in order to invert equation (B18) we need to evaluate: 

 
( )
( )







+

+

smsinhs

rsmsinh
sRe

 

The poles are obtained from sms +sinh = 0.  Hence there is a simple pole at s = 0 and there 

are infinitely many poles given by the solution of the equation sk +sinh = 0 and so )mn(s 22
n +−=      

where n = 0,1,2,……. 

Hence we note that: 

( )
( )

( )
( )

nss0s
smsinhs

rsmsinh
sRe

smsinhs

rsmsinh
sRe),r(u

==










+

+
+









+

+
= (C5) 

The first residue in equation (C5) is given by the following equation: 

( ) 
0ssmsinhssRe =+   = 

( )
( ) 









+

+

→ smsinhs

rsmsinh)sexp(
lim

0s


 = 

msinh

rmsinh
(C6) 

The second residue in equation (C5) is given by: 

( ) 
nsssmsinhssRe =+   =   

( )
( ) 









+

+

→ smsinhs

rsmsinh)sexp(
lim

nss


 

                                        =   
( )

( )


















+

+

→

smsinh
ds

d
s

rsmsinh)sexp(
lim

nss



 

...2,1n,
)incosh()mn(

)rinsinh()in]()mn(exp[2
22

22

=
+−

+−
=




(C7) 

Using )cos()icosh(  = and )sin(i)isinh(  =
 

)8C(])mn(exp[
mn

)rnsin(n
)1(2

)smsinh(

)rsmsinh(
eLt

1n

22

22

1ns

ss n




=

+−

→
+−









+
−=

+

+





  

From (C6), (C7) and (C8) we conclude that: 
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=),r(u 
r

2

)msinh(r

)rmsinh( 
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












+

−

=

+−+−

0
22

)(1

)(
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22
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
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(C9) 

 

 

Appendix D: Analytical Solution of Eqn. (16) 

Eqn .(13) can be written as 



k

r

u

r

2

r

u

t

u
2

2

−



+




=





      
(D1) 

The initial and boundary conditions are 

0
r

u
;0r

1u;1r

0u;0

=



=

==

==

(D2) 

when
r

v
u = , the eqn. (D1) becomes 









−




=






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(D3) 

Now initial and boundary condition becomes 

0v;0r

1v;1r

0v;0

==

==

==

(D4) 

Let 
6

rk
wv

3

+=

 

Now equation(D3) becomes 

2

2

r

w

t

w




=


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(D5) 

Initial and boundary condition becomes 

0w;0r

6

k
1w;1r

6
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w;0

3
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−==






(D6) 

The solution of eqn.(D5) becomes 




=

−
−
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
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
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(D9) 
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Appendix E: Scilab Program to Find the Numerical Solution of Eqn. (1) 

function pdex2 

m = 2; 

x = linspace(0,1);  

t=linspace(0,100); 

sol = pdepe(m,@pdex2pde,@pdex2ic,@pdex2bc,x,t); 

u1 = sol(:,:,1); 

%------------------------------------------------------------------ 

figure 

plot(x,u1(end,:)) 

title('u1(x,t)') 

xlabel('Distance x') 

ylabel('u1(x,1)') 

%------------------------------------------------------------------ 

function [c,f,s] = pdex2pde(x,t,u,DuDx) 

c = [1; 1; 1]; 

f = [1; 1; 1] .* DuDx;  

a=10; 

k=2; 

F= (- g*u(1)*u(2))*((a*u(2)+u(1)*u(2)+u(1)*b)^(-1)); 

s=[F]; 

% ----------------------------------------------------------------- 

function u0 = pdex2ic(x)                                     

u0 = [1; 0; 0];  

% ----------------------------------------------------------------- 

function [pl,ql,pr,qr]=pdex4bc(xl,ul,xr,ur,t)                 

pl = [ul(1)-0; ul(2)-0; ul(3)-0];  

ql = [1; 1; 1];  

pr = [ur(1)-1; ur(2)-1; ur(3)-0];  

qr = [0; 0; 0]; 

 

 

 

Nomenclature 

 
symbols Description Units 

SC  
Concentration profile of substrate    mol/cm3 

EC  
Concentration profile of enzyme                                        mol/cm3 
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*
SC  

Concentration of profile in the external solution mol/cm3 

SD  
Diffusion coefficient  s/cm2

 

catK
 

Kinetic enzyme reaction rate 1sec−  

MK  
Michaelis-Menten constant                  mol/cm3 

F 
Faraday constant  

-1mol C  


 

Dimensionless time None 

A Surface area of the electrode  2cm  

1r  

Radius of the electrode 2cm  

t Time   S 

&k  Dimensionless reaction diffusion parameters               None 

 

r Dimensionless radius None 

u Dimensionless of Concentration profile None 
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