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Two properties make organic semiconductor a good candidate for potential solar cell application: narrow 

band gap and long photoluminescence lifetime. The former benefit large short circuit current and high 

open circuit voltage while latter helps to achieve the separation of the photo-excited exciton in limited 

time. It is disappointing that the fluorescence lifetime of the photosensitizer is rarely studied, although a 

lot of efforts have been devoted to study the solar absorption and energy levels of the dyes. Herein we 

designed and synthesized three D-π-A type small molecules, D-TPA, R-TPA and C-TPA, using 

triphenylamine (TPA) unit as donor unit, thiophene as π-conjugation bridges, alkyl cyanoacetate, 

dicyanovinyl or rhodanine as acceptor units. By selecting the proper acceptor unit, D-TPA shows a 

narrower band gap and longer fluorescence lifetime than other dyes, and also resulting in an 

improvement of PCE, which enhances by 9.4% and 23.2% when compared to the R-TPA and C-TPA, 

respectively.  
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1. INTRODUCTION 

Polymers and small molecules are the two typical kinds of electron donor materials in the Organic 

photovoltaic (OPV) device. Although the reported polymer solar cells demonstrate higher PCEs[1-4], it 

is found that for a given polymer structure, the processing properties and performances greatly depend 

on the batch-to-batch variations in solubility, molecular weight, polydispersity and purity[5,6]. In 

contrast, small molecules-based OPV devices exhibit prominent advantages in many ways. Firstly, the 

performance changes little with batch to batch variation, due to their consistent and clear molecular 

structures [7]. At present, the efficiency of small molecules for organic solar cells (SCs) has exceeded 
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7%, which is largely approach to the excellent performances of the polymer SCs [8,9].  

Nowadays, a lot of attention has been put on organic-inorganic hybrid solar cells (HSCs) 

possessing advantages from both sides [10-15]. Nevertheless, there are few studies on HSCs applying 

small-molecule and inorganic semiconductors up to date. However, those HSCs using small molecule 

can hardly exceed an efficiency of 1% [16-18]. In order to enhance efficiencies even further, our target 

is to synthesize new small-molecule with long fluorescence lifetime and better aligned energy levels.  

As can be expected, the photovoltaic performances of HSCs could be optimized by designing 

proper dye molecules with distinguished properties, such as excellent film formation ability, wider and 

more efficient absorption, better matched energy levels between the donor/acceptor and higher charge 

mobility, as well as better solubility[7]. Excellent sensitizer in the HSCs can not only harvest photons, 

but also maintain a long lifetime ensuring successful separation from photo-excited exciton within a 

limited time at the contact surface of the organic/inorganic interface [19]. To our disappointment, the 

highly excited state lifetime is too short to achieve effective separation in most existing organic 

semiconductors, thus leading to poor performance of the HSCs. 

An ideal small molecule (sensitizer) should have a narrow band gap and a long exciton lifetime 

for the construction of photovoltaic device [11]. Many highly efficient small molecular SCs have 

employed the D-π-A type linear conjugated structures with the extended conjugation length, which can 

efficiently intensify and broaden the absorption spectra of the sensitizer.The D-π-A is a typical push-pull 

structural molecular configuration, consisting of a central building blocks (electron-donating unit (D)), 

end groups (electron-accepting unit (A)) and π-conjugation bridge (usually thiophene) [20]. Therefore, 

this kind of small molecule can effectively regulate and control band gap by altering central building 

blocks, end groups and the length of thiophene bridges. In fact, small molecules showed impressive 

performance in small molecule OPV [21,22]. Upon photoexcitation, electron transfer from the donor to 

the acceptor is a fast process to generate charge-separated species. In this respect, triphenylamine or 

substituted derivatives have been successfully used as donors for sensitizers in dye-sensitized solar cells. 

It has also been observed that the structure of the π-conjugated bridging group played a decisive role in 

device performance. The bridging group can serve both, as a part of the light absorbing chromophore 

and as a pathway for transporting charges. 

Because of its good electron-donating and hole-transporting abilities [23], organic optoelectronic 

materials derived from triphenylamine (TPA) derivatives is one of the most excellent efficient 

photovoltaic materials, and have been widely investigated in terms of their photovoltaic performance. 

Besides, benefiting from special propeller starburst structure, materials could exhibit isotropic optical 

and charge-transporting properties when TPA combines with the systems of π-conjugated units. Small 

molecules based on TPA show the potential for high-efficiency photovoltaic applications [24-26]. 

Dicyanovinyl [27,28], alkyl cyanoacetate and rhodanine are introduced into D-A small molecules as 

electron acceptor for their capability of effectively exciting intramolecular charge transfer and lowering 

band gaps[29,30,21]. Besides, these acceptors have a simple conjugated structure and strong electron-

withdrawing ability. The introduction of these molecules adjust the energy levels of the highest occupied 

molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) and improve the 

solubility.  

As for the inorganic part in the HSCs, the TiO2 is selected as the acceptor of the active layer for 
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its good electrical conductivity, and the TiO2:P3HT-based solid-state solar cells have displayed excellent 

optical performance after inserting the TT1 dye layer, which could make the TiO2 surface and P3HT 

separated properly, thus preventing the direct contact and thereby suppressing the charge recombination 

between them [31]. But take the stability of solar into consideration, the SCs with TiO2 cannot stabilize 

in the inert atmosphere [32,33]. 

In this work, three kinds of D-π-A small molecules, C-TPA, D-TPA, and R-TPA Fig. 1 (a) were 

devised and synthesized. Among the small molecules, the TPA unit acts as central donor unit, thiophene 

as π-conjugation bridges. Dicyanovinyl (D), alkyl cyanoacetate (C) or rhodanine (R) play the role of 

acceptor unit. Herein, much attention was put on the effects of electron-accepting unit on the 

fluorescence lifetime, energy level and the performance of the device. The schematic diagram was shown 

in Fig. 1 (b). This is different from the previous studies that mainly emphasized the importance on solar 

absorption and energy levels. By optimizing different acceptor, small molecule with a relatively long 

fluorescence lifetime is obtained. And the relationships among the acceptor units, fluorescence lifetimes, 

as well as the photovoltaic performance of the HSCs have been discussed in details. And the result of 

the present study may contribute to the design of the sensitizer materials used in HSCs.  

 

 
 

Figure 1. a) Chemical structure of C-TPA, D-TPA, and R-TPA. b) Schematic diagram of organic solar 

cells 

 

 

 

2. EXPERIMENTAL 

2.1. Materials and instruments 

All materials are either commercially available or easily prepared and used without purification 

if not necessary. The solvent is dried when there is a requirement in the use of the reaction. Compound 

4 (Scheme 1) (4-(bis(4-(dodecyloxy)phenyl)amino)benzaldehyde) was synthesized from the 

literature[34]. 
1H and 13C NMR were used to confirm structure information of compounds, and was measured 

by a Bruker ARX 400 NMR spectrometer. Thermal stability analysis was carried out on a TGA Q600. 

UV-vis was recorded by a Perkin Elmer Lambda 900 UV-vis/NIR spectrometer. The cyclic voltammetry 

(CV) was carried out by A BAS 100B instrument, tetrabutylammonium hexafluorophosphate (TBAPF6, 

0.1 mol/L) was used as the electrolyte solution, a polished platinum disk electrode (surface area, 0.5 

cm2) act as the working electrodes and an Ag/AgCl (Saturated potassium chloride solution) act as the 
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reference electrode. A platinum wire with a diameter of 1 mm was used as the counter electrode. Time 

resolved photo-luminescence measurements were performed on a spectrometer (Bruker Optics 

250IS/SM). Femtosecond laser pulse was applied to motivate the samples, operating at 10 Hz and the 

final time resolution was determined to be ~10 ps. The power conversion efficiency (PCE) of HSCs were 

carried out on Xe Lamp Oriel Sol3A™ Class AAA Solar Simulators (94023A, USA) under a simulated 

sunlight from a 100 W xenon arc lamp in atmospheric environment. 

 

2.2. Synthesis. 

The synthesis of three small molecules is shown in Scheme 1. 

  
 

Scheme 1. Synthetic routes to C-TPA, D-TPA, and R-TPA 

 

2.2.1 The synthesis of (E)-3-(4-(bis(4-(dodecyloxy)phenyl)amino)phenyl)-2- (thiophen-2-yl) 

acrylonitrile  

(Compound 5) 

1.3259 g of compound 4 (2mmol), 0.5 g of potassium tert-butoxide (7.8mmol) and 0.37 g of 2-

thiophene acetonitrile (3mmol) were dissoved in 30 mL of methanol in a 50 mL single neck flask. Heat 

the mixture from room temperature to 60°C, and then be refluxed for 12 h. After which, the mixture was 

cooled down to room temperature, which was rinsed with distilled water and be extracted with CH2Cl2for 

several times. The organic layer was collected and then be dried with anhydrous MgSO4 and then was 

concentrated by a vacuum rotatory evaporator. The crude product was purified by column 

chromatography (eluant: dichloromethane : n-hexane= 3:2) to give compound 5 as 0.37 g, a a yellow-

green solid (1.29 g, yield: 85.5%). 1H NMR (CDCl3, 400MHz, δ/ppm): 7.65(d, 2H), 7.25(d, 1H), 7.18(t, 

1H), 7.07(d, 1H), 6.99(t, 4H), 6.98(s, 1H), 6.85(t, 6H), 3.92(t, 4H), 1.76(m, 4H), 1.44(d, 4H), 1.26(s, 
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32H), 0.87(t, 6H). 13C NMR (CDCl3, 100MHz, /ppm): 156.4, 130.5, 127.5, 117.9, 115.4, 31.9, 29.4, 

22.6, 14.1. 

 

2.2.2 (E)-3-(4-(bis(4-(dodecyloxy)phenyl)amino)phenyl)-2-(5-formylthiophen-2-yl) acrylonitrile)  

(compound 6) 

POCl3 (3.5 mL) and N, N-dimethylformamide (6 mL) were put into a 25 mL three-neck flask 

under argon atmosphere at 0 °C and be stirred for 1h. 1.18 g of compound 5 (1.58 mmol) was dissolved 

in 1.5 mL of 1, 2-dichloroethane, and then the solution was added into the above-mentioned three-necked 

flask. The obtained mixture was stirred magnetically and refluxed overnight, and then cooled to 25°C. 

The crude product was rinsed with water and be extracted with CH2Cl2 for several times. The organic 

phase was collected and be dried over dry MgSO4, and be concentrated for the purification purpose. And 

the purification process was carried out by chromatographic column (eluant: dichloromethane: n-hexane 

= 4:1). Finally, compound 6 was obtained obtained as red solid (1.02 g, yield: 77.6%) . 1H NMR (CDCl3, 

400MHz, δ/ppm): 9.83 (s, 1H), 7.72 (d, 2H), 7.67 (d, 1H), 7.37 (m, 1H), 7.27 (s, 1H), 7.10 (d, 4H ), 6.86 

(t, 6H), 3.94 (t, 4H), 1.78 (t, 4H), 1.71 (s, 7H), 1.267 (s, 64H), 0.87 (d, 11H). 13C NMR (CDCl3, 100MHz , 

δ/ppm): 182.3, 156.9, 127.8, 117.2, 115.5, 31.9, 29.6, 26.1, 22.7, 14.1. 

 

2.2.3 The synthesis of C-TPA (Scheme 1) 

Compound 6 (0.4376 g, 0.193 mmol), dry CH2Cl2 (28 mL), 2-ethylhexyl cyanoacetate (1.35 mL, 

6.73mmol) and triethylamine were put into a 50 mL of single neck flask under argon. The solution was 

stirred overnight at 25 °C. The crude product was extracted with CH2Cl2 and rinsed with H2O for three 

times. The organic phase was dried over anhydrous NaSO4. The solvent was removed by reduced 

pressure distillation, and the obtained residue was purified by column chromatography (eluant: 

dichloromethane: n-hexane = 2:3). Finally, C-TPA was collected as a light yellow solid (0.1324 g, 

63.4 % yield). 1H NMR (CDCl3, 400MHz, δ/ppm): 8.05 (s, 1H), 7.81 (d, 2H), 7.72 (m, 2H), 7.54 (m, 

2H), 7.11 (d, 4H), 6.90 (d, 4H ), 6.83(d, 2H), 5.35 (m, 6H), 4.39 (m, 4H), 4.23 (m, 4H), 2.23 (t, 1H), 

2.03 (s, 2H), 2.01 (s, 1H) , 1.87 (m, 4H) 13C NMR (CDCl3, 100MHz, δ/ppm): 157.1, 128.0, 115.6, 53.4, 

31.9, 29.6, 29.4, 22.7, 14.2. ESI HRMS: [M+] 954.30 calcd. for C61H83O4N3S 954.36. Anal. calcd for 

C61H83O4N3S: C 76.70, H8.80, N 4.39; found: C 76.76, H 8.77, N 4.40. 

 

2.2.4 The synthesis of D-TPA 

0.2 g of compound 6 (0.564 mmol), 5 mL of dry CH2Cl2 and malononitrile (25.7 mg, 

0.389mmol) were put into a 25 mL single flask under argon. L-alanine (15 mg, 0.169 mmol) were 

dissolved in dry ethanol (4.5 mL) to get a solution and then was added to the flask. The mixture was 

heated to 40 °C, and then was stirred and refluxed for 12 h. Afterwards, the mixture was cooled down, 

which was then extracted with CH2Cl2 and be rinsed with H2O for three times. The organic layer was 

dried over anhydrous NaSO4. The organic solvent of the above mixture was removed by vacuum 
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distillation under 0.1 vacuum degree, and then the residue was purified by column chromatography 

(eluant: dichloromethane : n-hexane = 1:2) to give D-TPA as a navy blue solid (0.134 g, yield: 58.7 %). 
1H NMR (CDCl3, 400MHz, δ/ppm): 7.77 (d, 2H), 7.75 (t, 2H), 7.61 (d, 1H), 7.53 (t, 2H), 7.41 (s, 1H), 

7.35 (d, 1H ), 7.12 (d, 3H), 6.89 (s, 2H), 6.87 (d, 2H), 6.84 (s, 1H), 4.20 (m, 2H), 3.95 (t, 2H), 1.77 (m, 

3H) , 1.70 (m, 2H), 1.43 (m, 8H), 1.31 (t, 16H), 1.28 (d, 25H) 13C NMR (CDCl3, 100MHz, δ/ppm): 

167.8, 157.1, 130.9, 128.8, 127.9, 115.6 , 38.7, 29.6, 22.9, 14.1, 11.0 .ESI HRMS: [M+] 823.10 calcd. 

for C53H66O2N4S 823.15. Anal. calcd for C53H66O2N4S C 76.28, H 8.11, N 6.79; found: C 77.32, H 8.08, 

N 6.81. 

 

2.2.5 The synthesis of R-TPA 

6 (0.258 mmol), 28 mL of dry chloroform and 3-ethyl-rhodanine (487.5 mg, 3 mmol) were added 

to a 50 mL of round-bottomed flask under argon. Piperidine (1 mmol) was added to the above mixture 

as the catalyst in the reaction. After heating to 110 °C, the mixture was stirred and refluxed for 12 h. 

After be cooled down, the resulting solution was extracted with CH2Cl2 and H2O. The liquid phase of 

the next layer was collected, drying over anhydrous Na2SO4. R-TPA was got by column chromatography 

(eluant: dichloromethane : n-hexane = 1:2) as purple red solid (0.166g, yield: 70.6 %). 1H NMR (CDCl3, 

400MHz, δ/ppm): 7.62 (s, 1H), 7.27 (d, 3H), 7.11 (d, 4H), 6.87 (d, 7H), 4.19 (t, 2H), 3.94 (t, 4H ), 1.78 

(t, 4H), 1.62 (s, 4H), 1.26 (s, 36H), 0.88(t, 6H) 13C NMR (CDCl3, 100MHz, δ/ppm): 193.1, 156.8, 138.6, 

132.5, 127.8, 115.5 , 39.2, 31.9, 29.6, 26.1, 22.7, 14.0. ESI HRMS: [M+] 918.30 calcd. for C55H71O3N3S3 

918.34. Anal. calcd for C55H71O3N3S3: C 71.90, H 8.82, N 4.55; found: C 71.93, H 7.79, N 4.58. 

 

2.3. Device fabrication 

The device was fabricated with the general architecture: ITO/ TiO2/small molecular 

/PEDOT:PSS/Pt. All efficiency measurements are based on this structure. The TiO2 was made by a 

similar way according to literature[35]. With n-type TiO2 coated on Indium Tin Oxide (ITO) by spin-

coating technique, a thickness 200~300nm of TiO2 was prepared, and then the TiO2 film was sintered in 

atmospheric environment at 400 °C for 25 min. After that, TiO2 film were immersed into the dye solution 

(10 mg/mL in CHCl3) overnight to let the p-type small molecular permeate into the TiO2 layer, and then 

and the modified ITO electrode was dried under nitrogen atomosphere. The following is that the 

PEDOT:PSS as hole transport layer was spin coated onto the orgnic/inorganic hybrid layer on the ITO 

electrode. Lastly, with Pt electrodes are placed on the top by vacuum coating, the device was prepared 

successfully. 

 

 

 

3. RESULTS AND DISCUSSION  

3.1. Synthesis and Characterization 

For all molecules, TPA work as donor unit while cyanoacetate (C) dicyanovinyl (D) or rhodanine 
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(R) unit as the acceptors. The detailed synthetic routes to C-TPA, D-TPA, and R-TPA are outlined in 

Scheme 1. The intermediate, 4-(bis(4-(dodecyloxy)phenyl)amino)benzaldehyde (4) was synthesized 

through a three-step reactions from 4-iodophenol (1) according to literature procedures[34]. The 

aldehydes (4) and thiophene-2-acetonitrile were condensed by Knoevenagel Condensation to give 

compound 5, which underwent Vilsmeier reaction to yield compound 6. Finally, the target small 

molecule C-TPA was obtained in good yield by the Knoevenagel condensation reaction with 2-

ethylhexyl 2-cyanoacetate in the presence of catalytic amounts of triethylamine. D-TPA and R-TPA 

were synthesized by using the same reactions with malononitrile and 3-ethyl-2-thioxothiazolidin-4-one 

in the presence of L-alanine and piperidine, respectively. The structures of C-TPA, D-TPA and R-TPA 

were confirmed with NMR spectroscopy. C-TPA, D-TPA and R-TPA are soluble in common organic 

solutions. Thermogravimetric analysis (TGA) was used to investigate the thermal stability properties of 

C-TPA, D-TPA, and R-TPA. As shown in Fig. 2, C-TPA, D-TPA and R-TPA exhibit good thermal 

stability, with 5% mass loss temperature (Td) at 226, 223 and 273oC under a nitrogen atmosphere, 

respectively. The thermal stability of C-TPA, D-TPA, and R-TPA is adequate for application in 

processed HSCs. 
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Figure 2. TGA thermograms of C-TPA, D-TPA, and R-TPA 

 

3.2. Optical Properties 

UV-Vis absorption of C-TPA, D-TPA, and R-TPA are summarized in Table 1. As shown in Fig. 

3, the absorption peaks for C-TPA, D-TPA, and R-TPA are at 436, 561 and 483 nm, respectively. Three 

small molecules are absorbed at 350-700 nm, especially the D-TPA displays the nature of strong charge 

transport existing inside the molecules between the conjugated backbone of TPA and the acceptor. The 

absorption peaks of D-TPA revealed about 125 and 78 nm red shift compared with C-TPA and R-TPA, 

respectively. The optical band gap was calculated from band edges of the optical absorption spectra, 

which is 2.27 and 1.77 and 2.07 eV for C-TPA, D-TPA, and R-TPA, respectively, with D-TPA has the 

lowest bandgap among three molecules. By tailoring the acceptor structures, the optical band gap and 

absorption range was tuned, the three small molecules show wide absorption on whole visible 

wavelength range of the TPA-based small molecules, which indicate their potential application in HSCs. 
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Figure 3. a) UV-Vis absorption spectra of C-TPA, D-TPA, R-TPA in chloroform and b) in film 

 

Table 1. Optical, electrochemical and thermal stability data for C-TPA, D-TPA, and R-TPA 

 

 λmax(nm) Eg, opt(eV) HOMO LUMO Eg, CV(eV) Td(oC) 

C-TPA 436 2.27 -5.35 -3.45 1.90 226 

D-TPA 561 1.77 -5.38 -3.56 1.82 223 

R-TPA 483 2.07 -5.40 -3.55 1.85 287 

 

3.3. Electrochemical Characterization 

The CV technique was used to investigate the electrochemical properties of C-TPA, D-TPA, and 

R-TPA. The test method has been described in our previous work[35]. The measured value of the CV 

of the small molecules modified thin films are shown in Fig. 4. The bandgap (Eg) based on the HOMO 

and LUMO values of C-TPA, D-TPA, and R-TPA were found to be about 1.90, 1.82 and 1.85 eV, 

respectively. 

-2 -1 0 1 2

-0.0020

-0.0015

-0.0010

-0.0005

0.0000

0.0005

0.0010

0.0015

0.0020

 

 

C
u

rr
e

n
t 
(A

)

Potential (V)

R-TPA

C-TPA

D-TPA

 
Figure 4. Cyclic voltammogram measurements of different small molecules 

 

These data suggested that the introduction of different acceptor terminal units in these TPA 
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derivatives can tune effectively the electrochemical properties and optical band gaps of the resultant 

molecules. The D-TPA displays smaller electrochemical band gap and the optical band gap. 

 

3.4. Theoretical Calculations. 

In order to figure out the electronic structures of these small molecules, Density functional theory 

(DFT) calculations were conducted after majorizating the three dimensional geometric structures. 

Quantum mechanical calculations revealed that all small molecules have a similar zig-zag structure. 

These molecules are synthesized in a similar way, with TPA as a molecular skeleton and different 

acceptors applied which is hardly affecting main skeleton. However, because of the introduction of 

different units, which lead to the distribution of wave function in the molecular orbital to a certain extent 

and the changes of dihedral angle between the thiophene and the acceptors or the adjacent benzene plane. 

As can be seen from the Fig.6, the local electron density shows strong electronic driving force along the 

backbone, resulting from the difference of electron distribution between the TPA and acceptors. That 

can be good for the intramolecular charge transfer along the small molecule, thus extending the π-

conjugation. The LUMO orbitals of these molecules are uniformly distributed on the electron acceptor 

groups and adjacent conjugated bridges, which is in favor of the charge separation and transfer in the 

excited state of the small molecules, indicating that the intramolecular charge transfer from aniline donor 

groups to acceptors take place effectively, while the HOMO orbitals are mainly distributed on the aniline 

donor groups[36,37]. In addition, in the occupied orbitals of the whole energy range, aparting form the 

radical chain outside, other atomic group had little contributions to the density of states, the 

delocalization distribution of HOMO is conducive to intramolecular charge carrier mobility, ensuring 

the photo-chemical activity of the molecule. As shown in Table 1, The HOMO of the three small 

molecules is relatively close. However, the energy band gap of D-TPA is the smallest, which is in 

accordance with the experimental data and the widest absorption spectrum.  

In order to better understand the planarity of D-TPA, R-TPA, C-TPA, the dihedral angle between 

the thiophene and adjacent units are calculated through theoretical calculation. Theoretically speaking, 

improving the planarity of molecular is conducive to enhance the intramolecular π-electron 

delocalization, and improve the charge transfer ability[38]. Note that TPA is not a planar unit, for the 

reason that C-N bond employ the SP3 hybrid orbital approach. So we only focus on the dihedral angle 

between thiophene and adjacent benzene group or acceptor unit. It can be seen from Fig. 5，dihedral 

angles between the thiophene and acceptors unit for D-TPA, R-TPA, C-TPA are 2.3°, 0.4°, 1.1° 

respectively. Considering that the dihedral angles between the acceptor unit and the thiophene unit are 

small, the two units of the three molecules can be approximately considered to be on the same plane. 

The dihedral angles between the thiophene and the adjacent benzene appear difference, due to the 

attachment of different acceptor units of different electronegativities, the dihedral angle between the 

thiophene and benzene unit for D-TPA, R-TPA, C-TPA are 13°, 15°, 17° respectively. Overall speaking, 

D-TPA has better molecular planarity. Theoretically, D-TPA is stronger than the R-TPA and C-TPA in 

electron transport capability and intermolecular interaction, thus display better optical properties.  
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Figure 5. The dihedral angle between the thiophene and adjacent unit, obtained by the DFT/B3LYP/6-

31G∗method 

 

 
 

Figure 6. Optimized geometry and molecular orbital surfaces of the HOMO and  LUMO of the model 

compounds, obtained by the DFT/B3LYP/6-31G∗ method.  
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3.5. Fluorescence lifetime of the small molecules 

Herein we study the fluorescence lifetime of the three small molecules. The fluorescence lifetime 

is the average time that indicates the lifetime of the excited state. Relatively long lifetime is crucial for 

the exciton to get good separation in the interface between the TPA and acceptor units. Spectral 

signatures can be used to distinguish the excitons related to the process of intramolecular charge transfer 

(ICT). For the purpose to get their fluorescence lifetime, instant photo-luminescence experiment owning 

a time resolution of ∼30 ps was applied. An appropriate pump wavelength (500 nm) have been chosen 

to excite the small molecular in the low-energy absorption band. Fig. 7 shows the fluorescence decays 

of the three small molecules. All of the small molecules show almost the same performance in negative 

delay time, resulting from the instant response of auto-correlation of laser pulse. But the three curves 

show the trend of exponential decay on the right of coordinate. The decay is one stage with the falling 

speed more and more slow. From the downward trend of the curve, Single exponential function is found 

to be fit with the curve [39]. 

  (1) 

where S represents the signal of time, G represents a function related to background-free laser 

pulse auto-correlation, τ represents the time. The fluorescence decay time can be achieved by following 

expression 

               
(2) 

These fluorescence decays are in conformity with single exponential equation and listed in Table 

2. 

 

Table 2. The fluorescence lifetime of three small molecules 

 

Small molecular D-TPA R-TPA C-TPA 

ô/ps 85 73 64 

 

All the small molecules are shown to have shorter emission decay on ps time. Each data was 

collected repeatedly to guarantee its accuracy. In the electronic part of the hybrid system of D-π-A type 

small molecules, the D-TPA shows relatively longer exciton lifetime, slightly higher than R-TPA and 

C-TPA. It indicates that the fluorescence lifetime can be adjusted by changing acceptor unit. By altering 

the electron deficient acceptors unit, the interactions between internal groups of small molecules are 

tuned, thus leading to changes of delocalization of the excited states and different fluorescence lifetimes. 

( ) ( ) ( ) dττ/τ-expττ-t)( t
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Figure 7. Time-resolved PL results of the small molecules 

 

 

 
 

Figure 8.  J-V characteristic curve of different small molecular Inset: band structure of the OPVs 
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Figure 9. External quantum efficiency spectra of small molecules 



Int. J. Electrochem. Sci., Vol. 14, 2019 

  

2961 

Table 3. The photovoltaic parameters of bulk hybrid solar cells 

 

HSC        Voc[V] Jsc FF aη [%] 

C-TPA/TiO2 0.643±0.13 1.895±0.02 0.54±0.01 0.649±0.02 

D-TPA/TiO2 0.673±0.11 2.146±0.03 0.56±0.03 0.800±0.02 

R-TPA/TiO2 0.636±0.10 2.221±0.02 0.52±0.01 0.730±0.03 

aη=Jsc·Voc·FF/Pin, Pin =100 mW·cm-2 (AM 1.5) 

 

3.6. Photovoltaic Properties 

For the purpose to make sense of the effect of different acceptors on the OPV efficiency, We have 

made characteristic battery device (ITO/PEDOT:PSS/small molecular/TiO2/Pt) to explore their 

photovoltaic properties. J-V Characteristic curves of different small molecular are shown in Fig.8 and 

summarized in Table 3. The C-TPA and R-TPA display a PCE of 0.649% and 0.734%, respectively. The 

D-TPA exhibits a relatively high efficiency of 0.802%, which is a little higher than the C-TPA and R-

TPA. What is more, the external quantum efficiency (EQE) spectra of small molecules are shown in 

Fig.9 and D-TPA displayed obviously higher absorption than that of R-TPA and C-TPA. We also find 

that the efficiency of the different small molecular increase with the decrease of the band gap. The 

narrower the band gap, the wider range of available light. That can be testified by the UV-Vis absorption 

spectra as shown in the Fig. 3. Summary of photovoltaic parameters can be seen in Fig.10. 
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Figure 10. Summary of photovoltaic parameters 

 

Different acceptors units play an important role in adjusting energy levels, the acceptor units 

selected have different electron withdrawing ability. The deeper the HOMO energy level is, the higher 

open-circuit voltage is. Three kinds of small molecules in the HOMO-level gap is relatively small, so 

the open-circuit voltage of the three small molecules does not make much difference but the short-circuit 

current of C-TPA is small, caused by the large energy band-gap related to short-circuit current [40,41]. 

As to D-TPA and R-TPA, these two molecules have only a difference of 0.03 ev in band gap, so the 



Int. J. Electrochem. Sci., Vol. 14, 2019 

  

2962 

short circuit current of the two molecules does not make much difference. It seems to present a number 

of other factors, which determined the difference between the C-TPA and D-TPA. It is worth noting that 

D have two cyanos, it may be more advantageous to transfer electrons. However, it is difficult for us to 

find standard errors to correct error of the energy levels, and the energy levels can be finely tuned by 

other factors like the crystallinity and the electron withdrawing substituent position on small molecular. 

Therefore, accurate calculation of energy levels is not possible so far, although the dates can be 

reasonably explained. 

 

 

 

4. CONCLUSIONS 

To sum up, three D-π-A type small molecules, C-TPA, D-TPA and R-TPA have been devised 

and synthesized, which exhibit excellent properties such as good solubility and thermal stability, broad 

absorption especially the absorption peaks of D-TPA displayed about 125 to 78 nm red shift for the 

nature of strong charge transport existing inside the molecules between the conjugated backbone of TPA 

and the acceptor. By connecting different acceptor groups, the band gaps and fluorescence lifetime of 

small molecules are regulated at the same time. In particular, the effects of different acceptors unit on 

fluorescence lifetime are researched by instant photo-luminescence spectroscopy. We found that the 

photo-luminescence lifetimes could be tuned by changing the acceptor units. At length, D-TPA displayed 

the longest photo-luminescence lifetime, 85 ps, which is longer than R-TPA and C-TPA. The D-TPA 

based on D unit exhibits a higher Voc of 0.673 V and PCE of 0.802 %, because of its smaller band-gap, 

longer exciton lifetime. Although the efficiencies of solar cells are not outstanding, the work we did was 

already optimized. Unlike many hybrid solar cells with TPA as the main structure, we regard it more as 

the bridging group and study the effect of TiO2 film morphology on its performance [42-45]. We offer a 

new idea to improve the performance of hybrid solar cells by increasing the fluorescence lifetime of 

electron donors. The scalability in tuning the PL lifetimes makes those small molecules promising active 

layer material for solar cells. It is expected that the photo-luminescence lifetime can be prolonged even 

further to ensure that excitons get efficient separation with further design and construction such as 

altering the acceptor units, and the narrow energy gap, small molecules can achieve better optical 

properties.  
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