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The corrosion behavior of X65 steel and 304 stainless steel (SS) was investigated in typical passivation, 

uniform corrosion and pitting solution systems by electrochemical noise (EN) technique. Eleven 

characteristic parameters were extracted from EN data based on statistical analysis, shot noise theory, 

and wavelet analysis methods. Subsequently, the data samples composed by the extracted parameters 

were analyzed by gradient boosting decision tree (GBDT) model. The results indicated that the proposed 

GBDT model could efficiently and accurately discriminate the corrosion type for data samples 

containing X65 steel and 304SS. The discrimination results of GBDT for the corrosion type are 

consistent with their corroded morphology analysis. Among the eleven parameters extracted from EN 

measurements, noise resistance Rn, average frequency fn and wavelet dimension of EPN (WD_E) have 

the greatest influence on GBDT model. 
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1. INTRODUCTION 

Electrochemical noise (EN) is one of the popular electrochemical testing methods introduced 

firstly by Iverson and Tyagai [1, 2]. The EN method has the advantages of simple device utilization and 

non-destructive testing ability. In particular, the EN method has the ability to obtain the information of 

both corrosion rate and corrosion type, which cannot be achieved by other electrochemical testing 

methods [3-5]. Due to these advantages, the EN method has become a widely used electrochemical 

testing method in the area of corrosion research. 
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In corrosion study, researchers have been interested in how to identify the corrosion type of a 

certain material. Many researches have focused on how to extract the characteristics for identifying the 

corrosion types from EN data. The methods for analyzing EN data can be divided into three major types, 

including time-domain analysis, frequency-domain analysis, and time-frequency joint analysis. The 

characteristics for identifying the corrosion types include the following aspects. 

(1) Statistical characteristics such as noise resistance Rn, standard deviation σ, skewness, and 

kurtosis [6]. 

(2) Characteristic charge q and characteristic frequency fn from shot noise theory [7-9]. 

(3) Wavelet energy distribution from wavelet analysis [10]. 

(4) Correlation dimension calculated from phase space reconstruction theory [11]. 

(5) Wavelet-based fractal dimension obtained from wavelet theory and fractal analysis [12]. 

As described above, corrosion types could be identified by different data analysis methods from 

EN data. Therefore, the EN method can efficiently obtain a large amount of data containing the corrosion 

type information. Due to the efficiency of using the EN method, the corrosion type discrimination based 

on EN data is suitable to be performed automatically. The automatic corrosion type discrimination using 

the EN method is a strong advantage over other testing methods. In recent years, thanks to the rapid 

development of technologies such as pattern recognition and machine learning, researchers have 

developed many new methods for EN data analysis to distinguish and discriminate corrosion types. For 

examples, the cluster analysis and linear discriminant analysis have been introduced by Huang [13-15] 

into EN data analysis to distinguish different pitting states of low carbon steel in NaHCO3+NaCl 

solution. BP neural network has been applied by Li [16] to discriminate uniform corrosion, pitting and 

passivation of 304 stainless steel. The recurrence quantification analysis method has been used by Hou 

[17, 18] to analyze EN data and obtain characteristic parameters which are applied to linear discriminant 

analysis and random forest algorithm to discriminate the corrosion types of a carbon steel. 

Although cluster analysis, linear discriminant analysis, BP neural network method and random 

forest method have been successfully applied in the discrimination of corrosion types, the corrosion data 

used are mainly on single material and relatively not too much data groups. The lack of data samples 

may lead to the weak representation of the corrosion type discrimination. Under the background of the 

vigorous development of big data nowadays, material corrosion databases are developing rapidly. 

Therefore, how to classify a large number of corrosion type data in the form of database more efficiently, 

accurately and intelligently is a new requirement for the corrosion type discrimination methods. 

Gradient boosting decision tree (GBDT) is an iterative decision tree algorithm consisting of 

multiple decision trees. The results of all trees are added together to make the final result. The GBDT 

algorithm has been widely used in various fields since the introduction by Friedman [19]. Recently, the 

GBDT algorithm has attracted more attention because of its application as a machine learning algorithm 

for sorting and classification. Wang [20] has presented a new photovoltaic power prediction model based 

on the GBDT by using historical weather data and photovoltaic power output data. Li [21] has applied 

the GBDT for the detection of auxiliary through lanes at intersections. In addition to its strong predictive 

ability and good stability, GBDT also has the ability to effectively handle mixed features, which makes 

the GBDT algorithm very suitable for dealing with the corrosion types of various materials. 
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In this paper, the corrosion behavior of X65 steel and 304SS in passivation, uniform corrosion 

and pitting systems are collected by EN method. The obtained original EN data of these two materials 

are then mixed as the data samples. The gradient boosting decision tree (GBDT) model is used to 

discriminate the corrosion types of the mixed data sample. The results of corrosion type discrimination 

using this GBDT method are compared with the Rn-fn scatter pattern method. 

 

 

 

2. METHODOLOGY 

2.1 Gradient boosting decision tree 

The gradient boost decision tree (GBDT) is formed by combining the gradient boosting algorithm 

with the decision tree algorithm. GBDT uses decision trees as weak learners and builds the model in a 

stage-wise manner by optimizing the loss function [20]. After N times of iterations, a total of N decision 

trees (weak classifiers) will be obtained by GBDT. A final GBDT classifier model is constructed from 

these decision trees by weighting or voting on these weak classifiers. 

For a k-class problem, the basic steps for training the GBDT classifier model are as follows. 

Define X as the training sample, import n training samples X and set the relevant parameters. The 

number of iterations is set to N. The function Fk(X) represents the estimated value of the sample X 

belonging to the kth class. 

The function pk(X) is the probability of the sample X belonging to the kth class. pk(X) can be 

obtained from Fk(X) according to equation (1). 

𝑝𝑘(𝑋) = 𝑒𝑥𝑝(𝐹𝑘𝑖(𝑋)) ∑ 𝑒𝑥𝑝(𝐹𝑙(𝑋)) 

𝐾

𝑙=1

⁄                                                (1) 

The loss function L is shown in equation (2), where yk is the estimated value of the input data. If 

the sample X is in the kth class, yk =1, otherwise yk =0. 

𝐿 = − ∑ 𝑦𝑘 log 𝑝𝑘(𝑋) 

𝐾

𝑘=1

                                                                 (2) 

The gradient direction of residual reduction is calculated by using the loss function L, as shown 

in equation (3). 

𝑦̃𝑘 = −[𝜕𝐿 𝜕𝐹𝑘(𝑋)⁄ ] = 𝑦𝑘 − 𝑝𝑘(𝑋)                                                     (3) 

The gain of each leaf node ωjk is calculated according to equation (4). Let J represent the number 

of leaf nodes. By the split of the leaf node with the largest gain, a decision tree model containing J leaf 

nodes is obtained. 

                              𝜔𝑗𝑘 = (𝐾 − 1) ∑ 𝑦̃𝑖𝑘 

𝑛

𝑖=1

𝐾⁄ ∑|𝑦̃𝑖𝑘|(1 − |𝑦̃𝑖𝑘|) 

𝑛

𝑙=1

,

𝑗 = 1，2，3，…，𝐽                                   (4) 

Then, the next iteration is performed and the estimated values are updated. Each cycle constitutes 

a new decision tree until the end of N iterations, outputting a GBDT classifier model consisting of N 

decision trees. 



Int. J. Electrochem. Sci., Vol. 14, 2019 

  

1519 

3. EXPERIMENTAL 

3.1 Materials and electrolytes 

The materials used in this work were X65 steel and 304SS. The chemical compositions of X65 

steel and the 304SS are shown in Table 1. Coupons were cut to a dimension of 10 mm × 10 mm × 3 mm. 

The coupons for electrochemical measurements were encapsulated by epoxy resin after welded with 

copper wires. All coupons were ground by SiC paper up to 1500 grit, and then cleaned with ethanol. 

 

Table 1. Chemical compositions (wt. %) of the X65 steel and the 304SS. 

 

Alloy C Si Mn Ni Cr Mo Cu V Nb 

X65 0.09 0.26 1.30 0.15 0.04 0.17 0.13 0.04 0.03 

304SS 0.035 0.66 2.00 9.27 18.65 - 0.13 - - 

 

Ten solution systems were selected to set up passivation, uniform corrosion and pitting for X65 

steel and 304SS, as shown in Table 2. For X65 steel, the solution systems of 1 mol·L-1 NaHCO3, different 

concentrations of dilute H2SO4 and 1 mol·L-1 NaHCO3 with different concentrations of NaCl are 

corresponded to passivation, uniform corrosion and pitting respectively [22, 23]. For 304SS, the solution 

systems were 0.1 mol·L-1 NaOH, 0.5 mol·L-1 H2SO4 and 0.1 mol·L-1 FeCl3, which corresponded to 

passivation, uniform corrosion and pitting [11, 16]. All the solutions were prepared with ultrapure water 

and analytical reagents. 

 

 

Table 2. Solution systems selected for passivation, uniform corrosion and pitting of X65 steel and 

304SS. 

 

No. Materials Solution Corrosion types Labels* 

1 X65 1 mol·L-1 NaHCO3 Passivation P1 

2 X65 0.01 mol·L-1 H2SO4 Uniform corrosion U1-1 

3 X65 0.05 mol·L-1 H2SO4 Uniform corrosion U1-2 

4 X65 0.1 mol·L-1 H2SO4 Uniform corrosion U1-3 

5 X65 
1 mol·L-1 NaHCO3 

+ 0.1 mol·L-1 NaCl 
Pitting L1-1 
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6 X65 
1 mol·L-1 NaHCO3 

+ 0.2 mol·L-1 NaCl 
Pitting L1-2 

7 X65 
1 mol·L-1 NaHCO3 

+ 0.5 mol·L-1 NaCl 
Pitting L1-3 

8 304SS 0.1 mol·L-1 NaOH Passivation P2 

9 304SS 0.5 mol·L-1 H2SO4 Uniform corrosion U2 

10 304SS 0.1 mol·L-1 FeCl3 Pitting L2 

* For the labels, P represents passivation, U represents uniform corrosion, and L represents 

pitting. 

 

3.2 Electrochemical noise measurements 

The electrochemical noise spectrum X65 steel and 304SS in the above proposed solution systems 

were measured by electrochemical workstation (Autolab 302N, Metrohm, Switzerland) with a three-

electrode system. The metal coupon (X65 steel and 304SS) was served as the working electrode (WE) 

with a working area of 1 cm2. The same metal as WE was used as the counter electrode (CE), while an 

Ag/AgCl electrode (saturated KCl) was served as reference electrode (RE). The electrochemical 

potential noise (EPN) was recorded between WE and RE, and the electrochemical current noise (ECN) 

was recorded between WE and CE. The test frequency of EN was set to 2 Hz, and the duration of each 

EN measurement was set to 72 h. 

Before the measurements of X65 steel in the pitting systems (No.5, No.6 and No.7 solution 

systems), X65 steel was firstly immersed in 1 mol·L-1 NaHCO3 solution for 2 h for metal surface 

passivation, and then transferred to the testing solution systems. 

 

3.3 Feature extraction 

For the collected EN data, direct current (DC) component was firstly removed from the original 

EN data by the five-order polynomial fitting, and then EN data were cut into continuous segments. Each 

EN segment consisted of 1024 points (512 s recordings). Eleven characteristic parameters of EN were 

calculated from each segment, i.e. 1-noise resistance (Rn), 2-characteristic charge (q), 3-average 

frequency (fn), 4-standard deviation of EPN (σE), 5-standard deviation of ECN (σI), 6-skew of EPN (Vske), 

7-skew of ECN (Iske), 8-kurtosis of EPN (Vkur), 9-kurtosis of ECN (Ikur), 10-wavelet dimension of ECN 

(WD_I), and 11-wavelet dimension of EPN (WD_E) [6, 10, 16]. These characteristic parameters were 

used as the features for the corrosion type discrimination in this work. The importance of the features 

contributing to the accuracy of the GBDT model was estimated by calculating the average importance 

of the features in every single decision tree. 
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3.4 Morphology characterizations 

After EN measurements, coupons were firstly taken out from the immersion solution. Coupons 

from passivation systems were then rinsed by ultrapure water and ethanol. Whereas coupons from 

uniform corrosion systems and pitting systems were then dipped in the rust removal solution to remove 

the corrosion products. The rust removal solution was composed of 500 mL/L hydrochloric acid, 500 

mL/L ultrapure water and 3.6 g/L hexamethylenetetramine. After the removal of the corrosion products, 

the coupons were rinsed by ultrapure water and ethanol. The corroded morphologies of X65 steel and 

304SS were observed by digital microscopy (VHX-2000, KEYENCE, Japan). 

 

 

 

4. RESULTS AND DISCUSSION 

4.1 Corroded morphology 

Fig. 1 illustrates the corroded morphologies of X65 steel exposed to different solution for 72 

hours. In 1 mol·L-1 NaHCO3 solution, no corrosion is observed on X65 steel, indicating that X65 steel 

is in the passivation state (Fig.1a). In 0.01~0.1 mol·L-1 H2SO4 solution, an overall corrosion is observed 

on X65 steel, indicating that the uniform corrosion has occurred on X65 steel (Figs. 1b, 1c and 1d). In 

NaHCO3 + NaCl solution, obvious corrosion pits are observed on X65 steel, indicating that pitting 

corrosion has occurred as shown in Figs. 1e, 1f and 1g. 

 

  

  

 
Figure 1. Corroded morphologies of X65 steel in 1 mol·L-1 NaHCO3 (a), 0.01 mol·L-1 H2SO4 (b), 0.05 

mol·L-1 H2SO4 (c), 0.1 mol·L-1 H2SO4 (d), 1 mol·L-1 NaHCO3 + 0.1 mol·L-1 NaCl (e), 1 mol·L-1 

NaHCO3 + 0.2 mol·L-1 NaCl (f), and 1 mol·L-1 NaHCO3 + 0.5 mol·L-1 NaCl (g) solutions. 

(d) (e) (f) 

(a) (b) (c) 

(g) 
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Figure 2. Corroded morphologies of 304SS in0.1 mol·L-1 NaOH (a), 0.5 mol·L-1 H2SO4 (b), and 0.1 

mol·L-1 FeCl3 (c) solutions. 

 

Fig. 2 illustrates the corroded morphologies of 304SS exposed to different solution for 72 hours. 

In 0.1 mol·L-1 NaOH, 0.5 mol·L-1 H2SO4, and 0.1 mol·L-1 FeCl3 solutions, typical passivation, uniform 

corrosion, and pitting corrosion are occurred on 304SS, respectively. All these results means that in the 

corresponding proposed solution systems the corrosion types of passivation, uniform corrosion, and 

pitting corrosion are occurred on X65 steel and 304SS. 

 

4.2 EN characteristics 

Fig. 3 illustrates the typical EPN and ECN spectra of X65 steel and 304SS exposed to different 

solution systems. As shown in Fig. 3, EN signals generated by passivation are similar to the white noise 

composed of frequent oscillations, whereas EN signals from uniform corrosion are very smooth with no 

sharp transients. The amplitudes of both EPN and ECN from uniform corrosion are larger than the 

amplitudes from passivation. Compared with passivation and uniform corrosion, EN signals generated 

by pitting corrosion show typical pitting transients, which are fast and sharp, and mostly occur 

simultaneously in EPN and ECN. A number of similar EN signals have been observed in various EN 

studies [11, 16, 18]. Therefore, these results indicate that the corrosion processes of X65 steel and 304SS 

in the corresponding solution systems are indeed passivation, uniform corrosion and pitting. 
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Figure 3. EPN and ECN spectra of X65 steel and 304SS in the typical passivation, uniform corrosion 

and pitting solution systems. 

 

4.3 Rn-fn discrimination analysis 

Noise resistance Rn and average frequency fn of X65 steel and 304SS in different solution systems 

are calculated by the corresponding EN data. Fig. 4 illustrates the scatter diagram of Rn versus fn in 

different solution systems. As shown in Fig. 4, the data from X65 steel, represented by the solid points, 

can be divided into three regions by the solid lines (Rn=103-104 Ω·cm2, fn=103 Hz·cm-2). The data from 

304SS, represented by the open points, can be also divided into three regions by the dotted lines (Rn=105 

Ω·cm2, fn=105 Hz·cm-2). Cottis et al. have proposed using Rn and fn as the indicators of corrosion types 

[8]. According to Cottis, for both X65 steel and 304SS, the divided three regions correspond to 

passivation processes (high fn and large Rn), uniform corrosion processes (high fn and small Rn), and 

pitting processes (low fn and large Rn), respectively. These results indicate that the method of Rn-fn scatter 

diagram can discriminate the corrosion type of data from X65 steel or 304SS. 

However, if the data from X65 steel and 304SS are mixed, there are no lines that can divide the 

Rn-fn scatter diagram into three regions. The method of Rn-fn scatter diagram alone cannot discriminate 

the corrosion type of the data samples consisting of both X65 steel and 304SS. 
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Figure 4. Rn–fn scatter diagram of X65 steel and 304SS in typical passivation, uniform corrosion, and 

pitting solution systems. 

 

4.4 GBDT discrimination analysis 

After EN measurements in the different solution systems (Table 2), 3912 sets of data have been 

obtained, in which 2375 sets are for X65 steel and 1537 sets are for 304SS. Among the 2375 sets of X65 

steel, 326 sets are passivation, 1056 sets are uniform corrosion, and 993 sets are pitting. Among the 1537 

sets of 304SS, 404 sets are passivation, 749 sets are uniform corrosion, and 384 sets are pitting. All the 

EN data obtained from different materials in different solution systems at different time are mixed 

together in a random order. Eleven characteristic parameters in Table 3 are extracted from the EN data 

to form the data sample of the GBDT based on the statistical analysis, shot noise theory and wavelet 

analysis methods.  

70% (2739) of all the data samples are selected as the training sets, and the rest 30% (1173) are 

selected as the test sets. To ensure the validity of the GBDT results, the ratios of the number of X65 steel 

and 304SS data in the training sets and the test sets are the same as the ratios in the original data samples. 

The eleven features of each sample are combined into a feature vector in a specific order. This feature 

vector is used as the input set of the GBDT. The corrosion type corresponding to each sample is used as 

the output set of the GBDT.  

 

Table 3. Excerpted data samples for the GBDT. (Randomly taken from the mixed data samples) 

 

Class No* Rn q fn σE σI Vske Iske Vkur Ikur WD_I WD_E 

1 22675 1.39 

E-11 

27917 2.74 

E-05 

1.21 

E-09 

-2.77 0.68 19.04 4.77 1.98 1.50 

1 65006 1.27 

E-10 

2141 8.39 

E-05 

1.29 

E-09 

0.75 0.03 4.19 4.13 1.97 1.34 
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1 80702 2.14 

E-10 

1306 1.08 

E-04 

1.35 

E-09 

-0.08 0.67 2.69 3.65 2.06 1.21 

1 
53090 5.18 

E-11 

7486 4.64 

E-05 

8.75 

E-10 

-0.61 0.38 4.98 6.36 2.10 1.20 

…            

2 625.1 1.90 

E-09 

19861 8.27 

E-05 

1.32 

E-07 

0.63 0.83 3.30 4.24 1.78 2.01 

2 115.7 1.72 

E-08 

16508 1.01 

E-04 

8.68 

E-07 

1.05 -0.96 5.07 4.81 2.05 1.97 

2 13.61 3.75 

E-09 

45025 7.88 

E-06 

5.78 

E-07 

-0.075 0.029 2.72 3.05 2.16 2.19 

2 11.71 4.06 

E-09 

59708 7.39 

E-06 

6.31 

E-07 

-0.206 0.381 3.175 3.732 1.90 1.71 

…            

3 12740 1.87 

E-09 

304.6 2.58 

E-04 

2.02 

E-08 

0.190 9.085 4.069 112.3 1.90 1.34 

3 36691 4.60 

E-09 

130.6 3.53 E-

04 

9.63 

E-09 

-0.629 1.045 3.197 5.423 1.94 1.36 

3 6785 2.52 

E-08 

105.8 4.28 

E-04 

6.31 

E-08 

-0.428 0.948 2.800 6.977 1.82 1.60 

3 7856 2.12 

E-08 

70.8 5.29 

E-04 

6.74 

E-08 

-0.224 1.571 2.461 15.43 1.84 1.50 

…            

* The Class No. represents the corrosion type, 1-passivation, 2-uniform corrosion, and 3-pitting. 

 

Fig. 5 illustrates the mean squared error (mse) of the GBDT model based on the eleven features. 

As shown in Fig. 5, mse value decreases as the number of iteration increases. At the beginning of the 

training, mse value decreases rapidly and then reaches the minimum value. The minimum value of test 

mse appears at the 20th iteration. After then, as the number of iteration increases, the test mse first 

increases and then decreases. When the number of iteration reaches 26, the test mse has decreased down 

to the minimum value, and then remains unchanged. Therefore, the training can be stopped at the 20th 

iteration, without increasing the number of iterations. 

 
 

Figure 5. Mean squared error of the GDBT model based on the eleven features. (1-Rn, 2-q, 3-fn, 4-σE, 5-

σI, 6-Vske, 7-Iske, 8-Vkur, 9-Ikur, 10-WD_I, and 11-WD_E) 
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Figure 6. Comparison of the predicted corrosion types by the GBDT model with the actual corrosion 

types for test datasets based on the eleven features. (1-Rn, 2-q, 3-fn, 4-σE, 5-σI, 6-Vske, 7-Iske, 8-

Vkur, 9-Ikur, 10-WD_I, and 11-WD_E) 

 

The test sets (1173) are presented to the GBDT model for corrosion type discrimination. Fig. 6 

illustrates the accuracy of the GBDT model based on the eleven features, presenting by the comparison 

of the predicted corrosion types with the actual corrosion types for test datasets. The ordinate value 

represents the corrosion type. The values of 1, 2, and 3 represent passivation, uniform corrosion, and 

pitting, respectively. The abscissa represents the index of the test sets. The samples of No. 1-219 data 

are from the passivation solution system P1 and P2. No. 220-760 data belong to the uniform corrosion 

solution system U1-1, U1-2, U1-3, and U2; No. 761-1173 data are from the pitting solution system L1-

1, L1- 2. L1-3, and L2. The coincidence of the predicted and true points indicates that the prediction 

result is accurate. As shown in Fig. 6, among the samples of No. 1-219 data that belong to the passivation, 

three samples are identified for the uniform corrosion, and six samples are identified for the pitting. 

Three samples that belong to the uniform corrosion are identified for the passivation. Two samples that 

belong to the pitting are identified for the uniform corrosion, and another five samples are identified for 

the passivation. Among the total of 1173 test sets, only 19 sets misclassified in the corrosion type 

prediction. The prediction accuracy of the GBDT is as high as 98.4%. Compared with the failure 

discrimination result of Rn-fn scatter diagram for the two materials, GBDT is an excellent and developed 

model for identifying the corrosion type of data consisting of both X65 steel and 304SS. 

Fig. 7 illustrates the importance of the EN variables contributing to the accuracy of the GBDT 

mode. In the order of importance from high to low, the eleven features are 1-Rn, 3-fn, 11-WD_E, 7-Iske, 

4-σE, 10-WD_I, 9-Ikur, 6-Vske, 2-q, and 5-σI. All these extracted features play a role on the training of 

GBDT. Among the eleven features, noise resistance Rn, average frequency fn and wavelet dimension of 

EPN (WD_E) are the most significant. These three features have the strongest ability to reflect the 

characteristics of the corrosion type among the eleven features extracted in this paper. 

For the discrimination of passivation, uniform corrosion, and pitting, the GBDT method obtains 

higher accuracy than the linear discriminant analysis method (88%) and the random forest method (93%) 



Int. J. Electrochem. Sci., Vol. 14, 2019 

  

1527 

[18]. Furthermore, the GBDT method is proved to be applicable to the data samples consisting of two 

materials. Hou has recently reported, based on the recurrence quantification analysis of the EN data, 

uniform corrosion and under deposit corrosion can be distinguished from each other by the random forest 

method [24]. The GBDT method deserves further studies on other corrosion types and data samples 

containing more materials. 
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Figure 7. Importance of the EN variables contributing to the accuracy of the GBDT model. (1-Rn, 2-q, 

3-fn, 4-σE, 5-σI, 6-Vske, 7-Iske, 8-Vkur, 9-Ikur, 10-WD_I, and 11-WD_E) 

 

 

 

5. CONCLUSIONS 

Electrochemical noise (EN) data of X65 steel and 304SS in passivation, uniform corrosion, 

pitting solution systems have been analyzed by using the Rn-fn scatter diagram method and GBDT model. 

By comparing these two methods, GBDT model is more suitable to discriminate the corrosion type for 

data samples containing different materials of X65 steel and 304SS. 

The proposed GBDT model can efficiently and accurately discriminate the corrosion type of data 

samples consisting of X65 steel and 304SS. In typical passivation, uniform corrosion, pitting solution 

systems, the accuracy of the proposed GBDT model has reached 98.4%. 

Among the eleven features extracted from EN measurements, noise resistance Rn, average 

frequency fn and wavelet dimension of EPN (WD_E) have the greatest influence on the GBDT model. 

These three features have the strongest ability to reflect the characteristics of the corrosion type in this 

paper. 
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