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@ materials using nitrogen-doped,

nitrogen doping introduces a nitrogen functional gr e hydrophilicity and active sites of

the electrode material. Due to its highssp ace area (870.2 m? g!) and porosity, the
introduction of functional groups can i 3 ahsfer rate, Ultimately, the electrode has a
high specific capacitance (320.4 F g+ ‘at'e ity Of 0.5 A g1), excellent rate performance and
cycle stability (94.1% specific itance ion after 5000 cycles). The results of the above

studies indicate that a low-co i pcef’supercapacitor can be fabricated using abundant
waste lignin.

Keywords: Nitrogedzdop surface, active sites

nergy is rapidly decreasing and the environment is deteriorating [1]. The
ener es manufactured by people can reduce the consumption of natural energy and
improve the"dtihization rate of waste materials [2], it is gradually moving towards a green, sustainable
direction [3,4]. Supercapacitors are used in automotive, electronic, mobile power supplies, etc. They
are divided into electrochemical double-layer capacitors and tantalum capacitors. Compared with other
types of batteries, it has high energy density [5], long (and stable) cycle life, and low maintenance cost,
which has attracted wide attention from scholars. Carbon materials are the more commonly used
electrode materials [6,7], with many types, high specific surface area and good electrical conductivity
[8,9], however, the lower specific capacitance and complicated synthetic route limit the application of
carbon materials. Therefore, we need to explore a simple and economical method for preparing
electrode materials [10].
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There are many kinds of biomass in nature, the materials of carbon sources are different [11],
and the electrochemical properties are slightly different. Many scholars today use aloe, rice husks,
fungus, and stems of plants as carbon sources [12,13], They are used in a variety of activation
methods, and some scholars have added N-based elements to increase electrochemical performance
[14,15]. Lignin is the third largest natural organic matter in nature [16,17]. It has a large annual output
and is primarily used in the pulp and paper industry. Today's scientific research technology is limited,
and it is not fully utilized for lignin, and it is mostly waste [18]. Most of the lignin constituent elements
are carbon elements [19,20], which are activated by high temperature (with inert gas/protection) to
raise the specific surface area and mesoporous ratio of carbon [21]. The closer the porg size of the
carbon is to the size of the ions in the electrolyte [22], the higher the charg

resulting porous carbon has good electrical conductivity. Many scholars havedoun g of
nitrogen functional groups on the basis of carbon materials is beneficial te the ity of carbon
materials [23-26], increasing the effective active sites of ion transp leving fast

and efficient charge transfer rates, ultimately improve the
supercapacitors [28].

In this paper, a simple preparation method is used to
and abundant lignin as a carbon source, F127 as a template,
organic salt [15,29], the carbon material is obtainedgte

and a large specific surface area, improving the ce @

acture supercapacitors. Using cheap
dopiag with a nitrogen-containing
trogen-containing element (3.39%)
electrode and reduce its impedance.

2. MATERIAL AND METHODS

The morphology and particle size of the material is studied by field emission scanning electron
microscopy (SEM, SU70-HSD) and higher resolution transition electron microscope (TEM, JEOL
JEM2010). The crystallinity of the powder was recorded by X-ray diffraction (XD-2X/M4600, Cu Ka
A=1.54051 A). Raman spectra were conducted on a LabRAM HR800 Raman spectrometer. The
surface elemental composition was measured by X-ray photoelectron spectroscopy (Elmer PHI 550
spectrometer). The size distribution and specific surface area of the pore is collected respectively by
using the BET equation and Barret-Joyner-Halenda (BJH) model.
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2.3 Electrochemical measurement

The electrochemical measurements were carried out in three electrode on a CHI 760D
electrochemical workstation, which equipped with a reference electrode (Ag/Agcl), a counter electrode
(platinum gauze) and a working electrode just the nitrogen doped carbon electrode. Material was
measured using cyclic voltammetry (CV), galvanostatic charge—discharge (GCD) and electrochemical
impedance spectroscopy (EIS). Measurements were conducted in an aqueous electrolyte solution (6 M
KOH) at 25 ‘C. The mixture of active material, carbon black and polytetrafluoroethylene (PTFE)
binder with a mass ratio of 8:1:1 was coated onto the nickel current collector (with of around 1
cm x1 c¢cm). The electrode coated with abovementioned fabricated paste (Approximatel mg) was
dried overnight at 75 ‘C. The specific capacitance (Cq, F g) was calculated ula of
Cg= (I*At)/(m*V), where I(A) is discharge current, At(s) is the discharge ti is the potential
window during discharge and m(g) is the mass of active material on ele

3. RESULTS AND DISCUSSION

3.1 Microstructure characterizations

In order to investigate the microscopie the material, XRD is used to
characterize it as shown in Fig. 1a, it is ver aphite peak is at 23 (002) degrees. This
' is moderately crystalline, however No. 3

originates from the breathi ‘ atiC ring, the ratio of the two is used to characterize the
degree of crystallizatiop&T'he result§jef the two characterization methods are consistent.
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Figure 1. (a) XRD patterns and (b) Raman spectra of No1~4, respectively.

Studying the pore size distribution and specific surface area of nitrogen-doped carbon materials,
using nitrogen adsorption isotherms, as shown in Fig. 2, indicating the existence of micropores and
mesopores, most of the pores have a diameter of about 30 nm, microscopic apertures demonstrated by
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SEM and TEM (Fig. 3a~f), it shows a certain degree of ordered honeycomb coal structure (The picture
shows that it is more orderly than the carbon Xu Bin made [5]). Along with rising activation time from
0.5 h to 2 h, specific surface areas reached 384.1, 553.9, 663.7 and 737.5 m? g (Table.1), the specific
surface area of the material increases as the carbonization time increases. No.4 exhibits a high BET
specific surface area of 737.5 m? g%, and the micropore volume reaches 0.09 cm® g%, it accounts for
29% of the total pore volume. The specific surface area of the sample is significant for electrochemical
performance, but it is not a determining factor.

e (b)

(a) ——2
—a—15
——1
—— (.5

—=—1.5

e
08 ——05 \

g
dV/d(logD) (cm’(genm)-1)

04 |-
0.2

i /M
100 -
-
0.0 |-

o 200 400 600 800 1000
Pore Width (nm)

Adsorbed Amounts (cm’g",STP)

L ! s L L
0.0 0.2 04 0.6 08 1o
Relative Pressure (P/P)

Figure 2. (a) BET nitrogen adsorption—desorption isotherm andy(b) pending pore size of Nol1~4,
respectively.
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Figure 3. SEM (a~c) and TEM (d~f) image of No.3.

The closer the pore size of the material is to the size of the conductive ions, the smaller the
internal resistance, this hierarchical porous structure with high surface area plays a key role in
enhancing ion transport and charge storage.
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Table 1. Physical properties including the surface area, pore volume and size.

Sample  Seer  Smicro Vmicro
(mg") (m*g") (cm’g?)

1 384.1 170.2 0.08
2 553.9 436.9 0.21
3 663.6  569.1 0.27
4 7375 214.7 0.09
XPS measurement spectrum (Fig. 4) measured the existence of O and N functiohal groups in

carbon atom, the existence of functional groups can not only improve the hydr.
but also provide additional pseudopotential for raw materials [33]. The incr
will increase the content of O and N functional groups, however the nitr

decrease when the time is too long [34].
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of changes of the N, O, and ¢ elements. The N1s spectra indicate the

high* content, N-6 percentage increased from 23.5% to 69.2%][15], whereas N-5
percentage deCreased from 4.3% to 24.9% in No.1~4, The No. 3 material has the highest content of N-
5 and N-6, which not only improves the hydrophilicity of the material, but also provides more effective
active sites. Multiple C chemical states on the surface of carbons were confirmed by high resolution of
C1s peak (Fig. 6), which can be deconvoluted into peaks at around 284.5, 285.1 and 287.4 eV,
corresponding to C-C/C=C, C-O/C=N and C=0/C—N, respectively, No. 3 and No. 4 correspond to
higher C-O/C=N and C=0/C-N contents. For comparison, the quantitative analysis results of the
products prepared at different pyrolysis times are listed in Table 2, the carbon source is lignin, and it is
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hard to achieve carbon with high porosity and high nitrogen content. After pyrolysis for 0.5 to 1.5
hours, the N content increases, while the 2-hour N content decreases.
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Figure 6. High-resolution C1s XPS spectra (a) No.1, (b) No.2, (c) No.

Table 2. Percentage of various species of nitrogen (and carbon) in th i arbon) of
the samples.

Sample C- C-
C/IC=C 0O/C=N
1 54.4 38.8 24.6 45.8
2 58.3 36.3 17.3 49.4
3 34.1 51.7 12.6 15.7
4 36.3 60.6 9.5 2.1

3.2 Electrochemical behaviors

We investigated the
measured by galvanostatic

jormance of N-doped porous materials, it was
D) (at a current density of 1 A g*t) and cyclic

aqueous, it has a ipnates the shape of a rectangle, demonstrating the slight
pseudocapacitance’ ison with the CV curves of No.1~4, the curve of No.3 exhibited a larger

a curre i A g (Fig. 7b) (Galvanostatic charge/discharge time is longer than 220s [5]or
235s [29]), FIg™d presents the GCD curves of No.3 at various current densities from 0.5 A g* to 10 A
gl. The pore size of the material is mostly distributed at 40nm, which promotes the rapid transfer of
ions in the electrolyte, however, the main reason is due to the doping of N, O functional groups [33].
The shape of the curve is symmetrical triangle with slight deformation, which is attributed to the
influence of pseudo capacitance and double-layer capacitance.
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Figure 7. (a) CV curves at 100 mV s?, (b) GC

nitrogen doping, it can inc
reduce charge transfegimpedance@ylon transfer rate is very important in electrode materials of
supercapacitors.
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Figure 8. Nyquist plots of four sample capacitors.
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Cyclic durability is an important index for measuring electrode materials (When the current
density is 0.5 A g2, the specific capacitance is 201.2 F g%). It is measured in the two electrode system.
When the current density is 10 A g*(Fig. 9), after 5000 cycles of test, the specific capacitance can still
reach 89.5% (As shown in Table 3, compare the properties of several materials). No. 3 has no obvious
attenuation, indicating that it has excellent stability, the high N content and uniform distribution of
pore structure result in low mass mass transfer resistance. All those prove that Nitrogen doped carbon
Is very stable with cycling.
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Figure 9. The cycling performance of No.3 &pw Agl
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Figure 10. Specific€cap nces ofy3 electrode based on galvanostatic charge/discharge curves

cycle”stability, specific surface area and specific capacitance of different

Cyclic stability (%) Specific Electrolyte Ref

source (5000 times) capacitance(F g-1)

Rice husk 1225 88 (2000 times) 115 1M H2S04 12
Lignin 712 934 186.3 1M H2SO4 26
Lignin 1148 102.3 6 M KOH 36
Bamboo 1732 84 222 6 M KOH 37

carbon
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papaya 2664 98.7 (3500 times) 98.47 1M NazSO4 38
Lignin 83 (1500 times) 205 0.5M NaSO4 39
nanofiber

N-doped 267 70 (1000 times) 146 6 M KOH 40
carbon

4. CONCLUSIONS
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