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In this paper, a composite electrolyte of (Na/K)Ti2(PO4)3/Ti0.9Mg0.1P2O7 was synthesized using 

Ti0.9Mg0.1P2O7 and NaCl/KCl as raw materials. The composite electrolyte was characterized with 

XRD, SEM and EIS. The result of X–ray diffraction (XRD) indicated that an in-situ reaction fully 

occurred to Mg2+-doped titanium pyrophosphate and inorganic molten salt to form the Ti0.9Mg0.1P2O7 

and (Na/K)Ti2(PO4)3 bimorph structure. It can be seen from scanning electron microscopy (SEM) 

images that Ti0.9Mg0.1P2O7 and (Na/K)Ti2(PO4)3 are fused each other. The electrical conductivities 

results by electrochemical impedance spectroscopy (EIS) indicated that the 

(Na/K)Ti2(PO4)3/Ti0.9Mg0.1P2O7 shows a greatly improvement of conductivities. Finally, an H2/O2 fuel 

cell employing Ti0.9Mg0.1P2O7/(Na/K)Ti2(PO4)3 as electrolyte was fabricated.   
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1. INTRODUCTION 

Compared to fuel cells of low or high temperature, the fuel cells of intermediate temperature 

(300 °C ~ 800 °C) have many advantages. Exploring solid electrolyte materials which have high 

conductivity is key to the development of intermediate temperature fuel cells [1–7].  

Over the past decade, TiP2O7-based electrolytes have been widely studied as intermediate 

temperature fuel cell electrolytes [8–12]. Lapina et al. researched the effect of sintering temperature 

and phosphorus content on the electrical conductivities of 10 mol % Y3+-doped titanium 

pyrophosphate [10]. Norby et al. synthesized Al3+-doped TiP2O7, and the isotope effect on conductivity 

showed that the sample had good protonic conduction [11]. More attractively, our previous work 

showed that Ti0.95Mg0.05P2O7 is an ionic conductor and has a high conductivity [12]. Unfortunately, the 
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single MP2O7 materials were impractical owing to their poor sintering abilities. The researchers have 

done a lot of research to overcome the shortcomings of  MP2O7 single material [13–18]. For example, 

Hibino et al. prepared a dense H3PO4-doped polybenzimidazole / Sn0.95Al0.05P2O7 composite 

electrolyte by in-situ reaction [15].  

Many studies have shown that titanium phosphate has good alkali metal salt ion conductivity 

and high long-term stability in alkali metal salt ion batteries [19–24]. Whitacre et al. studied the long-

term stability of NaTi2(PO4)3 which was used as an anode material [19]. Xu et al. synthesized 

KTi2(PO4)3 by a hydrothermal method. Moreover, a carbon-coated KTi2(PO4)3 was obtained and it had 

high electrochemical performances in a sodium-ion battery [20]. In our previous work, we explored a 

titanium pyrophosphate/corresponding phosphate composite electrolyte [25]. The above researches 

indicate that pyrophosphate/corresponding phosphate material could overcome the poor mechanical 

strength of MP2O7 single material. 

In this study, a new composite electrolyte of (Na/K)Ti2(PO4)3/Ti0.9Mg0.1P2O7 was synthesized 

using Ti0.9Mg0.1P2O7 and NaCl/KCl as raw materials. The characterization properties of the sample 

were carried out by SEM and XRD. The electrical conductivities of (Na/K)Ti2(PO4)3/Ti0.9Mg0.1P2O7 

were studied at 300–700 °C. An intermediate temperature H2/O2 fuel cell was also fabricated. 

 

 

 

2. EXPERIMENTAL 

A (Na/K)Ti2(PO4)3/Ti0.9Mg0.1P2O7 was synthesized as follows. Reagent-grade MgO (0.24g), 

TiO2 (4.32g) and 85 % H3PO4 (11.6mL) were used as raw materials to synthesize Ti0.9Mg0.1P2O7 [12]. 

Briefly, the raw materials were fully mixed and changed into a hard mud after heating at 350 °C for 1 

h. Ti0.9Mg0.1P2O7 was obtained after the hard mud was grinded and calcined at 500 °C for 4 h. Then, 

NaCl/KCl (1:1 molar ratio) and Ti0.9Mg0.1P2O7 were mixed at a 1:4 weigh feed ratio and heated at 550 

°C for 1.5 hours. After the complete reaction, the obtained powder was then heated at 600 °C for 1 h to 

get the (Na/K)Ti2(PO4)3/Ti0.9Mg0.1P2O7.  

The crystallization of (Na/K)Ti2(PO4)3/Ti0.9Mg0.1P2O7 was tested by XRD. Surface and cross-

sectional photos of the composite electrolyte were taken with SEM. To research the electrical 

conductivity of (Na/K)Ti2(PO4)3/Ti0.9Mg0.1P2O7, 80%Ag-20%Pd paste and Ag wire were used as 

electrode and current collector, respectively. The conductivity was measured by an electrochemical 

analyzer (CHI660E) in the frequency range of 1-106 Hz in a dry nitrogen atmosphere at 300–700 oC. 

The composite electrolyte (diameter 18 mm, thickness 1.0 mm) was sealed between two alumina tubes 

by low melting glass ointment at 600 oC for 1 h. To research the ionic conduction under different pO2, 

oxygen concentration cell and log as a function of log(pO2) plot were measured in the range of the 

test temperatures [26]. The oxygen concentration cell was constructed: air, Pd-Ag ∣

(Na/K)Ti2(PO4)3/Ti0.9Mg0.1P2O7∣Pd-Ag, O2 at 400-700 °C. The H2/O2 fuel cell (H2, Pd-Ag∣

(Na/K)Ti2(PO4)3/Ti0.9Mg0.1P2O7∣Pd-Ag, O2) of the composite electrolyte was also tested.  
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3. RESULTS AND DISCUSSION 

Fig. 1 displays the crystal structure of the (Na/K)Ti2(PO4)3/Ti0.9Mg0.1P2O7. The peaks at 22.60º, 

25.31º, 27.79º and 37.88º agree well with the purity phase of TiP2O7 (JCPDS 38-1468) [10–12]. The 

strongest diffraction peaks at 24.19º and 24.25º are assigned to KTi2(PO4)3 (JCPDS 79-1880) and 

NaTi2(PO4)3 (JCPDS 84-2012), respectively [19–20]. This seems to indicate that a reaction fully 

occurred to Mg2+-doped titanium pyrophosphate and inorganic molten salt to form the 

(Na/K)Ti2(PO4)3/Ti0.9Mg0.1P2O7 [25]. 
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Figure 1. XRD pattern of (Na/K)Ti2(PO4)3/Ti0.9Mg0.1P2O7. 

 

Fig. 2 displays the SEM photos which showed the external and cross-sectional surfaces of the 

(Na/K)Ti2(PO4)3/Ti0.9Mg0.1P2O7. In Fig. 2(a), the external surface of the 

(Na/K)Ti2(PO4)3/Ti0.9Mg0.1P2O7 exhibits an approximate cubic shape, and the solid surface is 

adequately covered by a fused layer. In Fig. 2(b), the cross-sectional surface has a small number of 

holes, however, the experimental test proved that they are closed holes [25]. 
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Figure 2. The SEM photos of the (Na/K)Ti2(PO4)3/Ti0.9Mg0.1P2O7 (a, b).  
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Figure 3. The plot of log(T) ~ 1000 T-1 of (Na/K)Ti2(PO4)3/Ti0.9Mg0.1P2O7 at 300–700 °C in dry 

nitrogen atmosphere. 

 

According to the electrical conductivities of (Na/K)Ti2(PO4)3/Ti0.9Mg0.1P2O7 shown in Fig.3, as 

expected, the ionic conductivity of the sample increases with increasing test temperature and reaches 

the maximum ionic conductivity is 5.4×10-2 S·cm-1 at 700 °C. Compare with the literature, the 

(Na/K)Ti2(PO4)3/Ti0.9Mg0.1P2O7 is about four orders of magnitude higher than low valence metal ion 

doped TiP2O7 [8]. It can be attributed to the phase structure (Fig. 1) and additional transport pathways 

for protons (Fig. 2) formed by titanium phosphate with NASICON structure [25]. 
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Figure 4. The log versus log(pO2) plot of (Na/K)Ti2(PO4)3/Ti0.9Mg0.1P2O7 at 700 °C. 
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Figure 5. The relation between EMF and temperature of oxygen concentration cell: air, Pd-

Ag∣ (Na/K)Ti2(PO4)3/Ti0.9Mg0.1P2O7∣ Pd-Ag, O2.  

 



Int. J. Electrochem. Sci., Vol. 13, 2018 

  

7126 

0.0

0.4

0.8

1.2

P
 / 

(m
W

 c
m

-2
)

V
ol

ta
ge

 / 
V

Current density / (mA cm
-2

)

0 50 100 150 200

0

20

40

60

80

100

 

 

 

 
Figure 6. The H2/O2 fuel cell I-V-P curve of (Na/K)Ti2(PO4)3/Ti0.9Mg0.1P2O7 at 700 °C. 

 

The log ～ log(pO2) plot of (Na/K)Ti2(PO4)3/Ti0.9Mg0.1P2O7 represented in Fig. 4, was used to 

study the ionic conduction at 700 °C. The left half of Fig. 4 is horizontal in a reductive atmosphere (10-

20～10-10 atm), which confirms that (Na/K)Ti2(PO4)3/Ti0.9Mg0.1P2O7 is a good ionic conductor [26]. 

Meanwhile, the right half of Fig. 4 is upwards as the pO2 increases, which means 

(Na/K)Ti2(PO4)3/Ti0.9Mg0.1P2O7 is a mixed conductor of electron hole and oxide ion in a oxidizing 

atmosphere (10-10～100 atm) [27-28].  

To study the oxide ionic conduction of (Na/K)Ti2(PO4)3/Ti0.9Mg0.1P2O7 in a oxidizing 

atmosphere, an oxygen concentration cell was devised and the results are displayed in Fig.5. The oxide 

ionic transport numbers (tO) could be calculated on the basis of tO = EMFobs / EMFcal = 0.47-0.61. The 

EMFcal and EMFobs are the theoretical and observed electromotive forces of the oxygen concentration 

cell, respectively. The EMFcal is calculated as: EMFcal = 
F4

 RT tO ln[pO2 (A) / pO2 (B)] when tO = 1. The 

results are agreed with the right half of Fig. 4(10-10～100 atm) and prove that electron hole conduction 

exists besides the oxide ionic conduction.  

Fig. 6 shows the I-V-P characteristics of (Na/K)Ti2(PO4)3/Ti0.9Mg0.1P2O7. Fig. 6 shows that the 

voltage is about 1.1 V which indicates there is no crossover of H2 or O2. The peak power output 

density of the (Na/K)Ti2(PO4)3/Ti0.9Mg0.1P2O7 (thickness = 1.0 mm) is 94.5 mW·cm-2 at 700 °C. Chen 

et al. got a peak power density of 17.3 mW·cm-2 at 700 °C using Sn0.9In0.1P2O7 as electrolyte 

(thickness = 0.78 mm) [29]. Compared with the MP2O7-based single electrolytes, the 

(Na/K)Ti2(PO4)3/Ti0.9Mg0.1P2O7 not only improves fuel cell performance, but also increases the 

application temperature range.  

 

 

 

4. CONCLUSIONS 

In this paper, a novel composite electrolyte of (Na/K)Ti2(PO4)3/Ti0.9Mg0.1P2O7 was successfully 

synthesized by a one-step approach using Mg2+-doped titanium pyrophosphate and inorganic molten 

salt as precursors. The SEM results demonstrated that two phases of Ti0.9Mg0.1P2O7 and corresponding 

phosphate, (Na/K)Ti2(PO4)3, are interconnected a dense electrolyte. The highest conductivity of the 
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composite electrolyte was 5.4×10-2 S·cm-1 in dry N2 at 700 °C. The results of electrical conductivity 

measurement and log ～  log(pO2) plot show that (Na/K)Ti2(PO4)3/Ti0.9Mg0.1P2O7 is a mixed 

conductor of oxide ions and electron holes in a oxidizing atmosphere and an ionic conductor in a 

reductive atmosphere. The peak power output density of the composite electrolyte reached 94.5 

mW·cm-2 at 700 °C.  
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