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On the basis of traditional single-particle model, an extended single-particle (ESP) electrochemical 

model that considers the influence of electrolyte phase potential on terminal voltage in the light of 

electrochemical characteristics of lithium ion battery is designed. The linear decreasing weight particle 

swarm algorithm is adopted to identify the key parameters of the ESP electrochemical model to reduce 

the effect of parameter identification error on the accuracy of state-of-charge (SOC) estimation. And 

an ESP-model-based extended Kalman filter (EKF) algorithm which can compensate the error caused 

by the simplified solution and random noise by feedback control is also proposed. The simulation 

results demonstrate that EKF algorithm reduce calculation errors, parameter measurement noises and 

increase accuracy of SOC estimation for lithium ion battery. Finally, the Charge/discharge test using 

2300mAh LiFePO4 battery is carried out at 3C FUDS and comparison of experimental and simulated 

results show that ESP-model-based EKF algorithm using for SOC estimation has good accuracy and 

robustness. 
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1. INTRODUCTION 

Nowadays, it is no exaggeration to say that power batteries have been the heart of new energy 

vehicles (NEVs), and play a significant role in the developing of new energy automobile industry. 

Lithium-ion battery has been widely used in NEVs due to its large specific capacity, high energy 

density, pollution-free and long driving mileage. In this respect, battery management system (BMS) is 

an essential module, which results in reliable power management, optimal power performance and safe 

vehicle that lead back for power optimization in NEVs. Considering the complex dynamic driving 
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conditions of NEVs, accurate SOC estimation of the battery can greatly prolong its service life, 

improve its efficiency and ensure its safety and reliability [1]. 

During the previous reported SOC estimation methods, the ampere hour integral method is 

dependent on the precise initial value of the integration, which may generate a great cumulative error 

due to sampling error and noise interference [2]. Another way for SOC estimation is the open circuit 

voltage method, which should be stationary for a long time in the open circuit voltage method. Thus, it 

is not suitable for real-time estimation of the battery. In recent years, the battery-model-based 

estimation method is attractive, which needs to establish a model which can accurately reflect the 

battery characteristics and indirectly estimate SOC by measuring the observable parameters, such as 

current, voltage and temperature [3]. In this respect, most of the researches focused on the equivalent 

circuit model and electrochemical model. The equivalent circuit model simulates the dynamic 

characteristics of a battery by means of circuit elements. The physical meaning of model could be 

easily understood and its calculation could be easily achieved. At present, there are many SOC 

estimation methods based on equivalent circuit model, including extended Kalman filter [4, 5], 

unscented Kalman filter [6] and other filtering algorithms, sliding mode observer [7], adaptive 

observer [8] and other non-linear observer. However, the equivalent circuit model cannot reflect the 

internal mechanism of the battery reaction, and the transient precision of the model is low. Using 

multiple linear regression method to identify the parameters of RC equivalent circuit model online can 

improve the accuracy of the model, but greatly increase the calculation amount of the estimation 

method. 

The electrochemical model, based on the electrochemical principle, which reflects the 

microscopic mechanism of the battery and has higher precision, is of great significance to the research 

and the improvement of SOC estimation methods [9]. M. Doyle and T. Fuller, based on the 

concentration liquid theory and the porous electrode theory, established a pseudo-two-dimensional 

(P2D) model of a battery for the first time [10-12]. Although the model can accurately simulate the 

inside reaction of the battery, the amount of calculation was too many to achieve, especially for the on-

line estimation in vehicle BMS. Therefore, a lot of work have been done for simplifying and reducing 

the P2D model. 

Santhanagopalan [13] established a single particle (SP) model, in which both positive and 

negative electrodes were approximated by two spherical particles, and the concentration of Li
+
 in the 

liquid phase was neglected. This model greatly improved the operation speed, and had good accuracy 

at small current rate. Subramanian [14] used volume averaging method and parabolic approximation to 

simplify the solid phase diffusion equation for solving the average and surface Li
+ 

concentration of 

solid phase. This method greatly reduces the computational complexity and maximum error was less 

than 5%. Compared with equivalent circuit model, electrochemical model is more complex. It is still a 

technically difficult to guarantee the accuracy, the effectiveness and stability of the SOC estimation 

algorithm. 

In this paper, an extended single particle model (ESP) was established for improving the 

accuracy of the traditional single particle model. In the model, the influence of electrolyte phase 

potential on the battery terminal voltage was considered, and Parabolic approximation method and 

Padé approximation were used to simplify the Li
+
 solid phase and electrolyte phase diffusion equation. 
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Also, the key parameters were identified by linear decreasing weight particle swarm optimization, and 

the extended Kalman filter algorithm was used to modify the terminal voltage of the model for further 

improving the estimation accuracy of SOC. Finally, the effectiveness of the proposed algorithm was 

verified by simulation and experimental results. 

 

 

2. MODEL DEVELOPMENT 

2.1. Model simplification 

Based on the P2D model theory, we assume that the Li
+
 solid phase diffusion process occurs in 

a typical spherical particle, neglecting the distribution of the solid phase Li
+
 concentration along the 

electrode direction. The internal reaction mechanism of the discharge process is shown in Figure 1. 

During the discharge process, it will produce a concentration difference, leading to the diffusion of the 

Li
+
 in the negative solid phase material from inside to outside, and then passes through the separator, 

following by insertion from the surface of the positive solid particles into the interior of the particles 

[15]. 
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Figure 1. The internal reaction mechanism of the discharge process 

 

Based on the above assumptions, instead of the local current volume density  ji x , the average 

current volume density ji  is used throughout the cell, as shown in Eq. (1). 

                                   j j

j

I
i x i

Al
                                                                     (1) 

Where, I is battery input current; A , electrode plate area; jl , electrode thickness; in , ,j n sep p , 

n, sep and p represents negative electrode, separator and positive electrode of the lithium-ion battery 

respectively. 

In comparison with the original SP model, the ESP model not only considers the influence of 

polarization over potential and open circuit voltage on model terminal voltage, but also the electrolyte 
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phase potential and Ohmic potential. Thus, the terminal voltage of the ESP electrochemical model can 

be expressed as the sum of the above potentials, as shown in Eq. (2) [11]. 

                                  , , , ,0  0t p s p n s n e p e n p fV U L U L R I                                          (2)

 

Where, , ,s j surfc  is surface concentration in the electrode particle; , ,maxs jc , maximum solid phase 

concentration;      , , 0p s p n s nU L U  , positive and negative open circuit voltage difference; , ,e p e n  , 

electrolyte phase potential difference;    0p L  , polarization over potential; fR I , Ohmic potential; 

,s j , particle surface electrode utilization, which can be obtained by Eq. (3). 

                                            
, ,

,

, ,max

s j surf

s j

s j

c

c
                                                                        (3) 

 

2.1.1. Solution of open circuit voltage 

The most important thing to solve the positive and negative open circuit voltage is the solution 

of the solid diffusion equation. In the solid phase spherical active material, the distribution of Li+ 

concentration in spherical coordinates can be expressed by Fick's second law. 

                                          

, , ,2

2

s j s j s jc D c
r

t r r r

  
  

                                                                

(4) 

The initial boundary condition is 
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(5) 

Where, ,s jc  is solid phase concentration; ,s jD , solid phase diffusion coefficient;  ,0, s jr R , 

radial coordinate radius of electrode particles; ,s jR , electrode particle radius; jJ , pore wall flux of 

Lithium-ion on particle surface. 

Based on the previous assumptions, jJ  follows the Eq. (6). 

                                        
,

,3

j s j j

j j

j s j

i R i
J J

a F F
                                                                 (6) 

Where, ja is active surface area per electrode unit volume; ,s j , active material volume 

fraction; F , Faraday constant. 

The original solid phase Li+ diffusion equation is a partial differential equation with boundary 

conditions, and the solution is very complicated. Moreover, the estimation of the SOC requires only 

the surface concentration in the electrode particle. Therefore, in order to facilitate the implementation 

of the subsequent algorithm, the three parameter parabolic approximation method is adopted to 

simplify the solid lithium-ion diffusion equation [14]. The simplified concentration of solid phase can 

be expressed as Eq. (7). 

                                       

2 4

, 2 4
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R R
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(7) 
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Use the boundary conditions in Eq. (5) after substituting the parabolic approximation in Eq. (7) 

into Eq. (4). 

                                       ,

,

3
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                                                                     (8) 
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Where, ,s jc is the average solid phase concentration; ,s jq , the average solid phase flux. 

The boundary conditions have been known. 

, 0
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0s j t

s j surf s j surft

q

c c





 




                                                        (11) 

Where, , , 0s j surfc is the initial solid phase concentration. This value directly affects the initial 

quantity of electric charge. 

Use the boundary conditions Eq. (11) after substituting the parabolic approximation in Eq. (8, 

9) into Eq. (10). 
, , ,

2 2 2
, , ,

30 30 30
, ,

, , ,

, ,
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' ( ) '

7 7 35
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s j surf j j s j j j

s j s j

D R
c e J dt e J e dt R J J

R D

 

                   (12) 

After the surface Li+ concentration is obtained, the positive and negative open circuit voltage 

can be obtained according to the expression of the open circuit voltage. 

 

2.1.2. Solution of electrolyte phase potential 

The original SP model assumes that the concentration of Li+ in the electrolyte is constant, 

neglecting the influence of the Li+ concentration in the solution on the potential energy change, which 

leads to the poor accuracy of the model under the large discharge current condition. In this work, based 

on the simplified the equation of electrode phase Li+ concentration distribution, electrolyte phase 

potential of the battery can be obtained via electrolyte phase potential equation. The Li+ concentration 

distribution of electrode phase can be expressed by the Fick's second law, as shown in Eq. (13). 
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The initial boundary condition is 
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Where, ,e j is electrolyte phase volume fraction; ,

eff

e jD , effective electrolyte phase diffusion 

coefficient; 
0t is Li+ electrolyte phase transference number. 

The electrolyte phase lithium-ion diffusion equation is a set of parabolic partial differential 

equations with a large number of boundary conditions. For estimation and control applications, a more 

efficient approach to obtain an approximate solution can be formulated by taking the Laplace 

transform of Eq. (13). 

 
2

, 2

( ) ( )
0eff e

e e j

j j

d c s I s
sc s D

dx Al a
                                                    (15) 

Where, 0(1 ) /j ea t F   . When solving the battery electrolyte phase potential difference, we 

only need to know the electrolyte phase potential in electrode boundary ( 0x  ， x L ). It can obtain 

the transfer function that represents the effects of the electrolyte diffusion dynamics on the lithium-ion 

concentration at the electrode boundary ( 0x  , x L ) via the Eq. (15). The two transfer functions are 

approximated and simplified by using the first order Padé approximation method and the linear 

expression of the Li+ concentration in electrolyte phase can be obtained. 
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                                                (17) 

By using the average current density and the boundary conditions at the interface, the Ohm's 

law of the electrode phase potential is simplified [16]. The potential difference between the anode and 

the cathode is given by 

   
 

, ,

2( )2 (1 )
0 ln

(0) 2

n sep pe
e n e p e e eff

e

Ic LRT t
L

F c A

  
   




 
                                (18) 

Where, 
eff

j is effective electrolyte phase ionic conductivity. 

 

2.1.3. Solution of polarization overpotential  

The electrochemical reaction at the solid-liquid interface is described by the Bulter-Volmer 

dynamic equation. The relation between the Li+ pore wall flux and the surface polarization 

overpotential of solid particles can be obtained by this equation, and the Eq. (6) can be substituted into 

this equation. 

 
0.5

0.5 0.5

, ,max , , , , exp expj j e s j s j surf s j surf j j

F F
J k c c c c

RT RT

 
 

     
      

    
                      (19)

 

Where, jk is reaction rate constant, j , average polarization overpotential,  , electrode transfer 

coefficient, R , molar gas constant, T , battery operating temperature. 

The average polarization overpotential can be obtained by solving the Eq. (19). 
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It follows from the discussion above, the final terminal voltage of ESP electrochemical model 

can be obtained by substituting the above solutions into Eq. (2). 
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 
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 
 (21) 

 

2.2. Model parameter identification 

We use a cylindrical 2300mAh LiFePO4 battery as the test cell. The battery electrochemical 

parameters are shown in Table 1, some of which are supplied by battery manufacturers and some from 

the literature [17]. In order to improve the accuracy of the model, the key electrochemical parameters 

are identified for the difficulty of obtaining directly. These parameters include positive and negative 

solid phase diffusion coefficient, positive and negative reaction rate constant, and initial positive and 

negative surface Li+ concentration. 

 

Table 1. The electrochemical parameters of the LiFePO4 battery 
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The expression of the open circuit voltage [20]: 
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The terminal voltage data as the true value of the battery voltage was obtained by taking 

charge/discharge tests that were performed between 2.1 and 3.65V under a Land battery tester at 

various rates ranging from 0.1 to 2C at 25oC. And the linear decreasing weight particle swarm 

optimization (LDW-PSO), a highly intelligent bionic optimization algorithm, that can automatically 

adjust search strategy and accordingly has a large search space and speed at the initial stage of iteration 

and has strong local search ability in the final stage of the iteration [18], is used to identify the 



Int. J. Electrochem. Sci., Vol. 13, 2018 

  

1138 

unknown parameters in the ESP model. Therefore, adopting the ESP model to fit the terminal voltage 

of the test battery can minimize the error between the test terminal voltage and the model terminal 

voltage. The objective function of parameter identification is given by: 

                                    

 

  2

1

min ( )

( ) [ , ]
n

i i
i

J

J V f I



 
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



 



                                                        (22) 

Where, iV  is the terminal voltage at the sampling point i of test battery,  ,if I  is the terminal 

voltage at the sampling point i of battery model, iI  is the current at the sampling point i, 

, , , , 0 , , 0( , , , , , )s p s n p n s p surf s n surfD D k k C C   is the parameter vector to be identified in the ESP model. 

According to the parameter selection principle of the particle swarm optimization [19], we need 

to determine the optimal region for each parameter of the LDW-PSO algorithm. The scale of particle 

swarm m is 20. Dimension of a particle swarm n is 6. Cognitive weight c1 and Social weight c2 are set 

to 2. The constraint factor r is set to 1. The number of iterations is 1000. The final parameter 

identification results are shown in Table 2. Figure 2 shows the trend of the fitness function values 

variation in the iterative process of parameter identification. 

 

Table 2. The results of Parameter identification  
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Figure 2. The trend ofthe fitness function valuesvariation 
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2.3. Extended kalman filter SOC estimation 

Compared with the original SP model, the ESP model has higher precision. However, the 

uncertainty of the model is also increased because of using the average current volume density, 

simplifying Li+ solid phase and electrolyte phase diffusion process, and affecting by other unmodeled 

factors and random disturbances. Therefore, this work adopts the extended Kalman filter algorithm 

(EKF) based on the established dynamic model, uses the voltage error between model output and 

measured to correct the estimated value in real time, so as to ensure the accuracy of the estimated value 

and system stability. 

Extended Kalman filtering algorithm (EKF), an improved estimation algorithm for nonlinear 

systems based on the Kalman filtering algorithm, uses feedback control to estimate the process state 

and employ iterative loop method to achieve minimum variance estimation [21]. 

Based on the electrochemical model established above, define state 

variables 1 2 , , , ,[ , ] [ , ]T

s p surf s n surfx x x C C  , input tu I , output ty V . Discrete nonlinear equations of state 

can be obtained: 

( 1) ( ) ( ) ( )

( ) ( ( ), ( )) ( )

x k Ax k Bu k W k

y k V x k u k U k

   


 
                                                   (23) 

Where,W is the system noise; U , the observation noise. The system matrix A and the input 

matrix B can be directly obtained by Eq. (12).The nonlinear measurement functionV is obtained by Eq. 

(21). The observation matrix C of the nonlinear equation can be obtained by taking the partial 

derivative of the state variable with the observation equation. 

/C V x                                                                        (24) 

The recursive process of estimating SOC with EKF algorithm is as follows: 

(1) The initialization phase: the initial value of state vector 0|0x̂  and the initial value of the error 

covariance of state variables 0|0P  are given by 

0|0 0

0|0 0

ˆ ( )

( )

x E x

P Var x




                                                                   (25) 

(2) The time updating phase: it includes the state vector prediction and the error covariance 

matrix prediction. 
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1| |

k k k k k

T

k k k k
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



 
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                                                              (26) 

Where, Q  is the system noise variance matrix, which is Gauss white noise (mean value is 0). 

(3) The observation update phase: it includes calculation of the Kalman gain coefficient, 

updating of the state vector, and updating of the error covariance matrix: 
1

1 1| 1|

1| 1 1| 1 1 1| 1

1| 1 1 1|
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T T
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

    

 

                                           (27) 

Where, kR  is observation noise variance matrix, which is Gauss white noise (mean value is 0). 
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The Forecast updating of the state vector and the error covariance matrix can be achieved by 

constantly circulating the above process. In the electrochemical model, the SOC of the lithium-ion 

battery can be directly expressed by the surface concentration of the Li+ the positive solid phase. 

                                        
, , , , 0%

, , 100% , , 0%

s p surf s p surf

s p surf s p surf

c c
SOC

c c





                                                 （29） 

Where, , , 0%s p surfc  and , , 100%s p surfc  are the surface concentration of lithium-ion on the positive solid 

phase when the battery is discharged or charged absolutely.  

 

 

3. RESULTS AND DISCUSSION 

3.1. Model verification 
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Figure 3. Terminal voltage of discharge curvesat 0.5C rate. 
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Figure 4. Terminal voltage error of discharge curvesat 0.5C rate. 
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Figure 5. Terminal voltage of discharge curvesat2C rate. 
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Figure 6. Terminal voltage error of discharge curve at 2C rate. 

 

In order to verify the validity of the model under different magnification current conditions，

the constant current discharge tests at 0.5C and 2C current rate are carried out to verify the accuracy 

of the ESP model with different currents after parameter identification. And The ESP model is also 

compared with the original SP model[13]. The comparison of the experimental results and the 

simulation results calculating from the original SP model and the ESP model at 0.5C are shown in 

Figure 3 and Figure 4. It can be seen that the accuracy of the extended single particle model is very 

high, which is comparable to the P2D model. The maximum error of the ESP model obtained by 

parameter identification and the experimental results is only 12mV, while the error of the SP model is 

43mV.  

When discharge at 2C rate (Figure 5-6), the results obtained by the SP model differ greatly 

from the experimental data with about 0.12V maximum error, indicating that the SP model is no longer 

applicable in the case of high current. By contrast, although the maximum error of the ESP model 
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established in the work is also increased to 50mV, the raised is relatively pretty and acceptable in the 

view of the engineering point. Therefore, The ESP model can effectively improve the accuracy of the 

original SP model at high current conditions. 

In order to better reflecting the accuracy of the electrochemical model established in this work, 

it is summarized and compared the model performances of the ESP model and reported models as 

previous reported, such as with average model [22], parabolic polynomial (PP) model [23], simplified 

pseudo-two-dimensional (SP2D) model [24]. and terminal voltage errors comparison results are listed 

in Table 3. Therefore, it is show that the ESP model has been with higher accuracy compared with the 

most reported models . 

 

Table 3. Comparison of terminal voltage errors 

 Maximum error at 0.5C rate/ mV Maximum error at 0.5C rate/ mV 

This work 12 50 

SP model[13] 43 120 

Average model[22] 34 73 

PP model[23] 23 83 

SP2D model[24] 13 42 

 

According to the results obtained, the ESP model can not only improve the accuracy precisely 

at low discharge rate, but also estimates effectively at high rate. This might be attributed to taking into 

account the potential energy difference, which is resulted from the distribution of the electrolyte phase 

potential within the battery, and using LDW-PSO algorithm to identify the key parameters of the 

model. Thus, the simulation and experiment results show that the ESP model established in our work 

can effectively improve the accuracy of the original SP model. 

 

3.2. Algorithm verification 
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Figure 7. 3C FUDS current curve 
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Figure 8. Terminal voltage comparison of ESP, EKF and test at 3C FUDS. (a) Terminal voltage 

results; (b) Terminal voltage errors; 

 

The federal urban driving schedule (FUDS), a typical dynamic condition, can simulate the 

actual situation of the vehicles traveling on the urban road. In our work, the FUDS charge-discharge 

test with 3C magnification is used to verify the accuracy of the ESP model and the ESP-model-based 

EKF algorithm under complex cyclic conditions. The terminal current curve is shown in Figure7. 

To evaluate the effect of different models on the accuracy of SOC estimation, the terminal 

voltage estimation datum of the ESP model, the ESP-model-based EKF algorithm and the test values 

are compared in Figure 8. Under the complex dynamic driving conditions, ESP-model-based EKF 

algorithm can well simulate the terminal voltage characteristics of the batteries when the accuracy of 

the ESP model decreases.  

 
 

Figure 9. Contrast curve between SOC estimation and test values.(a) SOC estimation result; (b) SOC 

estimation error  
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The terminal voltage errors of the ESP model and the ESP-model-based EKF algorithm are 

exhibited in Figure 8b. It can be seen that the maximum error of the ESP electrochemical model after 

the parameter identification of the LDW-PSO algorithm at 3C FUDS is 2.8%. Thus, the dynamic 

characteristics of lithium ion batteries would be finely reflected in this model. When the ESP-model-

based EKF algorithm is used, the maximum error of the terminal voltage is only 0.9 % and the RMS 

error is only 3.2 mV, showing that the EKF algorithm effectively reduces the interference of 

unmodeled factors and random noises, resulting in the low error. 

Figure 9 is a comparison of SOC estimated values of the ampere hour integral method, the ESP 

model-based EKF algorithm and the test values of the batteries. It can be seen that when the value of 

SOC is very accurate at the initial stage, the precision of the ampere hour integral method is higher 

than the ESP-model-based EKF algorithm. However, with the increasing of charge-discharge time, the 

error of ampere hour integral method increases rapidly, because the ampere hour integral method uses 

the value of the last moment as the initial value. It will cause the small measurement error of current to 

accumulate gradually, resulting in more and more error. The error of ESP-model-based EKF algorithm 

fluctuates slightly when current changes are severe, but, as a whole, it is still stable in a small range. 

The results prove that the designed ESP-model-based EKF algorithm can eliminate the interference of 

system noise and observation noise and greatly narrow the error.  

The detailed analysis of the SOC estimation errors is listed in Table 4. Under 3C FUDS 

dynamic conditions, the maximum SOC estimation error of the ESP-model-based EKF algorithm is 

3.19% while that of the RMS is only 0.83%. 

According to the results obtained, the ESP-model-based EKF algorithm exhibit excellent SOC   

estimation performance. The estimation error are lower than most of the reported methods which using  

the same battery parameters and cyclic conditions in the experimental process (as compared in Table 

4)[25-29]. They might be related to their unique computational features in several aspects:   (i) The 

ESP electrochemical model that considers the influence of electrolyte phase potential on terminal 

voltage in the light of electrochemical characteristics of lithium ion battery, which reflects the 

microscopic mechanism of the battery and has higher precision. (ii) the key parameters of the ESP 

model are identified by LDW-PSO algorithm which can automatically adjust search strategy, 

significantly increase search space and speed at the initial stage of iteration and has strong local search 

ability in the final stage of the iteration. (iii) EKF algorithm effectively reduces the interference of 

unmodeled factors and random noises, resulting in the low error. 

 

Table 4. Comparison of the SOC estimation errors 

 Maximum error/% RMS error/% 

This work 3.19 0.83 

ampere hour integral method 7.25 3.26 

SPM-based EKF algorithm[25] 4.32 1.32 

AM-based EKF algorithm[26] 3.96 1.44 

SPM-based UKF algorithm[27] 3.87 0.97 

SPM-based output-injection observer[28] 4.28 1.06 

P2D-model-based Luenberger observer[29] 3.11 1.31 



Int. J. Electrochem. Sci., Vol. 13, 2018 

  

1145 

In order to verify the robustness of the algorithm, the SOC estimation curves of the ampere 

hour integral method and the ESP-model-based EKF algorithm are compared in Figure 10 in the case 

that there are large deviations in the initial SOC. As can be seen from the diagram, when the initial 

SOC error is 25%, the ESP-model-based EKF algorithm rapidly converges to the real value, showing 

excellent robustness. 
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Figure 10. Contrast curve between SOC estimation and test values when initial error exists 

 

 

4. CONCLUSION 

(1) On the basis of the SP model, by considering the influence of the electrolyte phase potential 

on the battery terminal voltage, the ESP electrochemical model of lithium-ion batteries is established, 

which improves the accuracy of the SP model under high magnification current condition. LDW-PSO 

algorithm is used to identify the key parameters of the model, and the accuracy of the model is verified 

by experiments and simulations. The maximum error is less than 50mV with a large current discharge 

rate of 2C. 

(2) The ESP-model-based EKF algorithm is designed. By modifying the terminal model 

voltage, the EKF algorithm eliminates the interference of unmodeled factors and random noises, and 

the estimation accuracy of the SOC is improved. Simulation and experiment results show that the ESP-

model-based EKF algorithm has good estimation accuracy in complex dynamic conditions, and the 

maximum estimation error is less than 3.19%. 
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