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The corrosion resistance of low-temperature steel EH40 with and without cooling treatment was
investigated after salt spray testing under artificial conditions. The surface morphologies, chemical
compositions, and corrosion rates of low-temperature steels EH40 were respectively analyzed by
scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), and mass loss method.
Electrochemical impedance spectroscopy (EIS) measurements were employed to examine the effect of
the cooling treatment on the corrosion mechanism of EH40. The results showed that pitting corrosion
occurred for the steels subjected to cooling treatment at -80°C, which further accelerated their
corrosion behaviors. By contrast, a uniform corrosion pattern was observed on the steel samples
unsubjected to the cooling treatment. In the latter case, the formation of passive films on the steels
surfaces lowered the rates for further corrosion.
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1. INTRODUCTION

The discovery of large amounts of gas hydrates in the cold polar regions of the earth has
recently attracted worldwide concerns [1-2]. The paucity of knowledge about the polar region led
researchers to use a variety of techniques to expand the available information to cover the entire
continent. Particular polar expedition vessels [3-5] are often used to navigate under the lower
temperature atmosphere. Therefore, low-temperature steels which resist to very cold polar conditions
are required to construct polar expedition vessels.

The impact fracture toughness of materials at low temperature greatly changes, where materials
suffer from brittle rupture [6-7]. A number of studies showed that low temperature and welding
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remarkably influence steel track fracture [8-9]. For example, fracture behavior of porous iron at
temperatures ranging from room to -60°C was examined by Straffelini et al [10], and the results
revealed that the impact fracture toughness increase as the testing temperature decrease. Menzemer et
al [11] found that the extrinsic influence of temperature on impact toughness—fracture resistance could
be explained by the mutual interactive influences of intrinsic microstructural features, local stress
states, and macroscopic fractures. To date, although some steel plates with excellent brittle crack
arrestability for shipbuilding have been accomplished [12-14], low-temperature steels performing at
extremely cold conditions like polar environments still require development.

In particular, EH40 steels were shown to have great potential in building polar expedition ships
due to their high strength performance, relevant low-temperature impact toughness, prominent ship
plate steel extension, and outstanding weldability. Two main properties of EH40 steels are currently
investigated more than the others, and this relies on low-temperature toughness and high-efficiency
welding process. Ma et al [15] demonstrated that EH40 thick steel plates have excellent toughness at
low temperatures (-10°C) using tests based on CTOD (crack tip opening displacement). Fatigue crack
growth rates in EH40 steels were evaluated by Xia et al [16], and a new crack propagation rate formula
was established. Other studies found that the impact toughness property of EH40-TM steel plates
welded with high heat input was linked to the microstructure morphology, distribution of grain
boundary ferrite, and the acicular ferrite [17-18]. High strength steel plates with heavy gauges of
EH36, EH40 and EH47 grades weld with high heat input were explored, and the data suggested the
steel plates have excellent mechanical properties in terms of base plates and welded joints [19].

To date, the structural properties and performance of steels were extensively investigated at
high temperatures [20-23] but a little research on steels was performed at low temperatures, especially
in extremely cold environments. A survey of the literature revealed that only handfuls of studies are
accessible on corrosion behaviors of material under freezing temperatures. The structural and
mechanical properties of EH40 steels could resist to lower temperatures but once cracks occur, the
properties could sharply deteriorate, especially the corrosion resistance in chloride environments like
seawater. Therefore, it is necessary to determine the corrosion behavior of EH40 steels under
extreme cold environment.

In this work, the corrosion resistances of EH40 steels were tested with and without cooling
treatment. EH40 was firstly cooled to -80°C and then immersed in artificial seawater under low
temperature. The corrosion mechanisms of EH 40 were systematically investigated by combined
techniques based on scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy
(EDS), mass loss, and electrochemical impedance spectroscopy (EIS).

2. EXPERIMENTAL

2.1 Test specimen and test preparation

EHA40 steels with planar dimensions of 300x500mm and thicknesses of 30mm were supplied by
Baosteel Co., Ltd. The compositions of the steels are listed in Table 1.
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Table 1. Chemical compositions of the tested steels (wt%).

Element C Si Mn P S Cr Ni Mo Cu Al Nb V Ti Fe
Content 0.16 0.15 090 < < 0.20 0.40 0.08 0.35 0.015 0.02 0.10 0.02 Balance
0.010 0.0015

Rectangular coupons (10mmx10mmx2mm) were cut from the as-supplied steel plates and used
for mass loss assay and corrosion analysis. Prior to the experiments, the surfaces of the specimens
were ground with silicon carbide (SiC) papers progressively up to 600 grit, rinsed with deionized water
and degreased with acetone before drying under a cool air. All the samples were then placed in a
desiccator for 24h. Subsequently, the coupons weights were measured by a precise electronic balance
(FA 114).

Prior to electrochemical measurements, the specimens were embedded in epoxy resin leaving
an exposed testing area of 1 cm? Each coupon surface was wet abraded to an 800-grit finish,
degreased with acetone, rinsed with distilled water, and finally dried under a cool air. For comparative
purposes, half of the resulting specimens were cooled to -80 for three days, and others were left placed
in a desiccator at 25°C.

All the corrosion experiments were carried out with a cryogenic system (DL-2005). The
samples with and without cooling treatment were placed in beakers of artificial seawater at
temperatures of 0°C+0.2°C. During the tests, sodium chloride (NaCl) solutions with concentrations of
35 g/l £ 5 g/l were used as the artificial seawater. The total test time lasted three days. Three mass loss
specimens were tested for each treatment process to calculate the corrosion rates.
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Figure 1. Schematic diagram of low-temperature artificial seawater immersion tests

2.2 Surface morphology and component analysis

The morphologies of the corrosion products of EH40 steels after the immersion testing for
three days were observed by a scanning electron microscope (SEM, JSM-7500F model, 10kV). An
energy dispersive spectrometer (EDS) was employed to analysis the compositions of the corrosion
products.
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2.3 Corrosion rate

After the immersion corrosion experiments, all the specimens were taken out and immediately
cleaned with distilled water. To remove the corrosion products, the specimens were put in a bath
containing 10% hydrochloric acid (HCI) inhibited with 10 g/L hexamethylenetetramine (urotropine) at
room temperature and then rinsed and dried. Next, the samples were weighed again to obtain the final
weights and allow calculating the weight loss values. The corrosion rate was estimated according to Eq.
(1).

Veorr = Am/(S#t) 1)

where Vo is the corrosion rate in mg-dm?.d™, Am is the weight loss in g, S is the surface area
of the specimen in dm?, and t is the corrosion time in days (d). The final corrosion rate was taken as the
average of two measurements after three days of corrosion testing, and the data were presented with
error bars.

2.4 Electrochemical measurements

The electrochemical impedance spectroscopy (EIS) was performed using an electrochemical
workstation (Metrohm AG Autolab) and the data were fitted with Auto lab equipped with software
Nova 1.10. A conventional three-electrode glass corrosion cell was used. A saturated calomel electrode
(SCE), a piece of platinum with an area of 2.25 cm? and low-temperature steel sample were used as the
reference electrode, counter electrode, and working electrode, respectively. The text medium contained
3.5 wt.% sodium chloride solution to mimic sea water during the corrosion process. Before EIS
measurements, the specimens were immersed in the salted media for 30min at room temperature to
make sure the testing process was stable. The EIS measurements were conducted at frequencies
ranging from 10kHz to 10mHz at open circuit potential (OCP) with voltage perturbation of 5 mV.

3. RESULTS AND DISCUSSION

3.1 Surface morphological and corrosion product analysis

Fig. 2 shows the SEM images of the EH40 specimen surfaces with and without cooling
treatment after the immersion corrosion process for three days. The surfaces of specimens unsubjected
to the cooling treatment appeared with uniform films, while those subjected to the cooling treatment at
-80°C looked loosen and asymmetry. The corresponding SEM pictures presented in Fig. 3 after the
corrosion products were removed from the corrosion coupons. Fig. 3 clearly depicted that the
specimens unsubjected to the cooling process underwent a uniform corrosion after the salt spray for
three days while the samples subjected to the cooling process experienced pitting corrosion.
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Figure 2. SEM images of surfaces of the EH40 specimens before and after the immersion corrosion
tests: (a) specimen before the tests, (b) corrosion products of the cool-treated specimens after
the immersion, (c) and corrosion products of the specimens unsubjected to the cooling
treatment after the immersion.

Figure 3. SEM images of the specimens after removal of the corrosion products: (a) cooling treatment
at -80°C and (b) unsubjected to cooling treatment.



Int. J. Electrochem. Sci., Vol. 12, 2017 11082

Fig.4 depicts the chemical composition of the corrosion products performed through EDS. The
primary elements present in the corrosion products were O and Fe with a trace of C, Cl, and Na.
Therefore, it can be proposed that the corrosion products were mainly composed of iron oxides. The
data also suggested that O and CI contents in the specimens unsubjected to the cooling treatment were
higher than those of the treated samples which demonstrated that the corrosion products were much
more.

Previous studies [24-25] demonstrated that uniform and dense corrosion products formed on
steel surfaces could be effective as anti-corrosion protective films as the corrosive substances are not in
direct contact with the steel surface. Thus, passive corrosion films might protect steel from further
corrosion and decrease the corrosion rates.
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Figure 4. SEM images and the corresponding EDS spectra of specimens with and without cooling
treatment after immersion 3 days.
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However, corrosion pits were found on the steel surface of the samples subjected to the cooling
treatment at -80°C after removal of the corrosion products (Fig. 3). ClI is considered as the most
aggressive ion species present in artificial seawater, which could destroy the formed oxide layers [26]
to easily penetrate the loosen products film. Cracks occurred easily in the cooled specimens at -80°C,
hence CI diffused to reach the internal structures of the specimens, which led to serious local
corrosion. Once the enriched CI concentration exceeded a threshold in a local region of the steel
specimen, a new pitting corrosion could possibly be initiated. By contrast, the formation of an anti-
corrosion protective film on the samples unsubjected to the cooling process restrained further corrosion.

3.2 Corrosion rate analysis

The average corrosion rates of different specimens were calculated based the mass loss and the
data are shown in Fig. 5. The corrosion rate of samples subjected to the cooling treatment at -80°C was
estimated to 22.62mg-dm?.d™, which was higher than the value (19.88mg-dm?.d™) of untreated
samples. SEM and EDS confirmed that the corrosion products formed on the surfaces of specimens
subjected to the cooling process appeared uniform and compact, suggesting a uniform corrosion. By
comparison, the surface of specimens subjected to cooling process showed pitting corrosion
underneath the loosen corrosion, which could not be identified without removing the surface products.
As a result, the steel substrate was subjected to severe corrosion at the later stages of test.
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Figure 5. Corrosion rates of different treated EH40 steel after 3 days of immersion corrosion testing.

3.3 Electrochemical studies

Electrochemical impedance spectroscopy (EIS) is a powerful and non-destructive technique
used for characterization of electrochemical reactions at the metal/electrolyte interface and study
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corrosion products formation. The impedance spectra are normally displayed either in the form of a
Nyquist (complex plane) plot or a Bode plot [27]. Herein, the impedance spectra of cooling treated and
untreated steel samples were recorded at the open circuit potential to monitor the corrosion behavior.

Fig. 6 illustrates the impedance spectra of different treatment steel samples after 3 days of
immersion corrosion testing. Compared to original steel unsubjected to immersion at low temperature,
Fig. 6a clearly showed that diameters of the impedance loops after the immersion corrosion for three
days significantly decreased. Also, the diameters of impedance loops of the cooling treated sample
appeared smaller than those of untreated specimens implying the acceleration in the corrosion rates of
the steel specimens. These differences in impedance loop diameters could be attributed to the corrosion
films formed on the surface of the steel samples without cooling treatment. The respective magnitude
Bode plot (Fig. 6b) illustrated that the total impedance magnitude at the lowest frequency of
uncooling-treated steels (the logarithmic value was 2.3) was higher than that (the logarithmic value
was 2.1) of cooling-treated ones. As shown in the phase angel Bode plots (Fig. 6¢), a weak phase angle
maximum appeared at the lowest frequency range of cooling-treated steel specimen, implying active
pit growth [28]. Previous studies revealed that steel treated at -80°C induced pitting corrosion
underneath the corrosion products, which were consistent with the electrochemical results.
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Figure 6. Impedance spectra of different treated low-temperature steels after 3 days of immersion
corrosion testing at the open circuit potential.
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Usually, impedance spectra are analyzed using an equivalent circuit, taking into account the
contribution of each phenomenon, such as EDL, film formation, coating and others. The corrosion
characteristics of steel under low-temperature artificial seawater atmosphere were further analyzed
using the impedance data based on two equivalent circuits (Fig. 7) [29]. In the equivalent circuits, Rs is
the solution resistance, CPE; and Ry are respectively the capacitance and resistance of the passive
corrosion products formed during corrosion testing, R¢ is the charge transfer resistance, CPEgy
represents the double-layer capacitance at the surface of the electrolyte/steel substrate, and CPEg and
CPE; are the constant phase angle elements used as substitute of capacitor to compensate non-
homogeneity in the system. The first equivalent circuit was used to fit the EIS data with only one
capacitive loop (Fig. 7a) but the second circuit was used for EIS data with two capacitive loops (Fig.
7b).

CPEy
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Figure 7. The two equivalent circuits used for fitting the impedance data of the steel specimens in salt
spray atmosphere: (a) fitting data with only one capacitive loop and (b) fitting data with two
capacitive loops.

The fitted parameters of the electrical components are listed in Table 2. As can be seen, the
charge transfer resistances (R¢;) of the specimens subjected to the cooling process were smaller than
those of untreated steel samples. It is widely recognized that the corrosion rate is inversely
proportional to changes in transfer resistance based on the Stern-Geary equation [30-32]. The results
implied higher corrosion rates of the cooling-treated steel samples which underwent the cold
immersion process. Moreover, the charge transfer resistances (R.;) of specimens after the immersion
corrosion were much less than those of original steel which not immersed. This demonstrated that
despite the formation of uniform film on the surface of samples unsubjected to the cooling treatment
after immersion corrosion, the corrosion rates of these steels were still higher than those of original
steels without low temperature immersion. Another noticeable circuit element in Table 2 deals with the
resistance of oxide films (Rf). Compared to the specimens cooling treated, the Ry of the specimens
unsubjected to cooling treatment was higher, which suggested that the oxide films gradually grew after
corrosion to form thick and compact layers on the surface of not cooling treated steel (Fig. 8a).

The cool-treated EH40 steels at -80°C tended to generate crack originated early in the process,
and then extended on the surface[13]. By comparison, the steel unsubjected to the cooling treatment
showed no cracks. The chloride ions can easily penetrate the cracks to infiltrate the inner layers of steel
and cause pitting corrosion (Fig. 8b). As the chloride ions had no access to the inner layers of not
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cooling treated steels, the corrosion products were homogeneously formed on the surface of the EH40
steel (Fig. 8a).

Table 2. Fitting parameters of impedance spectra of the studied steels.

Sample Rs(Q) CPEq Ny Rc(Q2) CPEs Ny Ri(Q)
Original 9.53 323 0.625 3330

80C(Ed) 224 16.8 0.522 389 20.1
25°C(3d)  6.74 22.3 0.626 432 15.4 0.489 22.4

Figure 8. The corrosion mechanism of EH40 in the low-temperature artificial seawater environment:
(a) without cooling treatment and (b) with cooling treatment at -80°C.

The corrosion behavior was further confirmed by analyzing the obtained open circuit potentials
(OCPs), as shown in Fig. 9. During corrosion, the OCP negatively shifted but the shifts recorded with
the untreated samples were less than those of specimens subjected to cooling process. This confirmed
the formation of a passive film on the surface of the not cooling treated specimens, slowing down the
corrosion rates of further oxidation. By contrast, pitting corrosion formed on the specimens subjected
to cooling treatment, thus leading to further severe corrosion. These phenomena can cause shifts in
OCP towards the negative direction and decrease the anti-corrosion process. These results were also
consistent with the previous corrosion morphology.
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Figure 9. The open circuit potentials (OCPs) of cool-treated and untreated steels after immersion
corrosion for three days.

4. CONCLUSIONS

The corrosion behaviors of EH40 steels with and without cooling treatment in low-temperature
artificial seawater atmosphere for three days were investigated by means of SEM/EDS, mass loss, and
EIS techniques. The specimens subjected to cooling treatment at -80 °C showed signs of pitting
corrosion, which later led to further serious corrosion. By comparison, the steel samples unsubjected to
the cooling treatment experienced uniform corrosion with the formation of anti-corrosion passive films,
which prevented further corrosion under the testing atmosphere. On the other hand, the anti-corrosion
properties of steels decreased under artificial seawater environment compared to original steel samples
unsubjected to the low-temperature salty conditions. Overall, these findings suggest that at low
temperatures combined with salty conditions, more attention should be paid as corrosion processes
could be accelerated, and thus better preventive measures should be considered.
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