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As a common pipeline material, X70 steel has been extensively used in China (West-East Gas Pipeline 

Project), México and other countries. The macro-/micromorphology and surface composition of X70 

steel in sand soil at exposure time of 35 d have been characterized using Canon 6D SLR cameras, SEM 

and EDS. To further study the effect of the heavy metal Zn (Ⅱ) on the corrosion performance of X70 

steel in sand soil, electrochemical corrosion tests (exposure times of 7 d and 35 d), polarization curves 

and EIS measurements have been conducted utilizing an electrochemical workstation. Additionally, six 

sand soil samples with various contents of Zn (Ⅱ) were prefabricated. The results demonstrated that 

the addition of Zn (Ⅱ) in sand soil clearly accelerated the corrosion process and affected the corrosion 

performance of X70 steel in sand soil. In non-contaminated sand soil, the corrosion products of X70 

steel were mainly composed of Fe2O3 and FeOOH etc… whereas the inner and outer layer iron-

containing compounds constituted the corrosion products in Zn ( Ⅱ )-contaminated sand soil. 

Moreover, the addition of Zn (Ⅱ) in sand soil increased the degree of coverage and diversification of 

the corrosion products. The corrosion behaviour of X70 steel in non/low-contaminated sand soil (Czinc (

Ⅱ) ≤ 0.034%) exhibited localized corrosion, whereas in high-contaminated sand soil (Czinc (Ⅱ) = 0.068%-

0.680%), uneven general corrosion was confirmed. Furthermore, in contaminated sand soil, the 

corrosion degree of X70 was the most severe at a Zn (Ⅱ) content of 0.034%. A high content of Zn (Ⅱ
) (0.034%) accelerated the corrosion process. In addition, the Warburg impedance was observed in the 

EIS data of X70 steel in sand soil at exposure time of 35 d, and the reaction control step of the 

electrode reaction changed from activation control to diffusion control for X70 steel in Zn (Ⅱ)-

contaminated sand soil. 
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1. INTRODUCTION 

X70 steel (American steel grade) is highly resistant to soil corrosion and has been used in 

China (West-East Gas Pipeline Project), México and other countries [1]. The transport of oil and 

natural gas mainly relies on a long-distance pipeline in China, which has been continuously developed 

[2-4]. However, the buried pipeline steel, which is in contact with different soil media, will inevitably 

corrode to various degrees due to soil moisture erosion, molten salt, oxygen and microorganisms. 

Local corrosion perforation leads to oil and gas leakage, interruption of transport, environmental 

pollution and serious economic losses and casualties [5, 6]. Additionally, there are an increasing 

number of underground pipes, casing pipes, storage tanks and other underground facilities [7]. 

Moreover, heavy-metal pollution, which is caused by an increasing number of fertilizer and pesticide 

applications and the discharge of industrial waste, negatively affects human health and environmental 

protection and has become increasingly serious [8, 9]. Zn, a major-pollutional heavy metal element in 

soil, not only decreases the engineering properties of soil (compressibility, shear strength, etc.) but also 

affects both the soil resistivity and corrosion [10-12]. Hence, the studies of the causes of pipeline 

corrosion and timely and effective measures for corrosion protection are important. 

Resistivity, moisture content, pH, soluble salt content and temperature are the main factors that 

affect soil corrosion [13]. Physical and chemical property measurements, electrochemical tests, data 

processing and corrosion product analyses are four current types of research methods used to 

investigate the soil corrosion of metal materials [14-18]. Many researchers have contributed to rapid 

and accurate measurements of the corrosion rate of X70 steel in soil media and acquired the following 

results. In soils from five regions in Inner Mongolia, there are significant differences amongst the 

corresponding corrosion rates of X70 steel that have been buried underground for two years, and the 

corrosion rate (8.3 g/dm
2
·a) in the Bameng region is the highest. Furthermore, all the corrosion rates of 

X70 steel that were buried underground for two years are lower than those buried for one year [19]. In 

a NACE solution with a 2CO  partial pressure of 2 MPa, the corrosion rate (uniform corrosion) 

increased with temperature. Additionally, pitting corrosion was predominant at 120 ℃ and was more 

evident under the action of Cl  [20]. During a simulation of the corrosion environment of wet natural 

gas in oil and gas fields in a high-temperature and high-pressure condensation kettle, an increase in the 

moisture temperature increased the corrosion of X70 steel at a wall temperature of 5 ℃. However, an 

increase in the wall temperature slightly decreased the corrosion rate of X70 steel at temperatures of 25 

℃ and 45 ℃. In addition, the corrosion morphology from 25 ℃～45 ℃ exhibited comprehensive 

corrosion [21]. In a soil simulation solution from Qingdao, the X70 corrosion rate linearly increased 

with an increase in stray current density, and there was a difference between the DC and AC stray 

currents in the corrosion mechanism and pattern. Using an AC stray current, the corrosion amount was 

smaller (but more concentrated), and local corrosion was likely induced. In addition, the mixing of the 

DC stray current with the AC current substantially increased the metal corrosion rate [22]. 

There are many studies regarding the electrochemical behaviour of X70 in a soil simulation 

solution. In a near-neutral soil simulation solution (NS4), the existence of 2CO  significantly increased 

the corrosion of X70 steel. The cathodic process included the reduction of 
H , OH 2 , 32COH  and 

-
3HCO , with the reduction of 32COH  and -

3HCO  predominating [23]. In an alkaline-simulated soil 
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solution for west Inner Mongolia (Baotou), the addition of a rare earth metal (cerium) in X70 steel 

increased the corrosion potential of the metal but inhibited uniform corrosion [24]. In a soil simulation 

solution that contained 2CO  from Korla, China, the reaction between 2CO  and a 3eCOF  corrosion film 

formed a soluble Fe complex and accelerated the corrosion of X70 steel. Furthermore, a combination 

of hydrogen embrittlement and anodic dissolution led to stress corrosion cracking (SCC), and the 

effect of hydrogen embrittlement increased with an increase in 2CO  partial pressure [25]. In a strong 

alkaline-simulated solution from a typical soil in Western China, X70 steel was more sensitive to 
2
4SO and Cl . Specifically, an increase in Cl  concentration increased the corrosion current density of 

X70 steel and simultaneously intensified the pitting and overall corrosion. Furthermore, the adsorption 

of a small amount of 2
4SO  on the metal surface increased the pitting tendency, whereas the extensive 

coverage of 2
4SO  hindered the impact of Cl  [26]. In addition, in saline soil with two humidities near 

Qinghai Salt Lake, the corrosion rate of X70 steel first increased and then decreased with an increase 

in humidity. The maximum value was acquired at a humidity of 15%～20%. However, the corrosion 

rate increased with an increase in soil salt content [27]. In contaminated soil from Shenyang, the 

inoculation of sulphate-reducing bacteria (SRB) increased the corrosion current of X70 steel by 1～2 

orders of magnitude, and pitting appeared on the surface [28]. In 3.5 wt. % NaCl-simulated sandy soil, 

the corrosion of X70 steel was controlled by both cathodic diffusion and oxygen reduction, and the 

charge transfer resistance increased with particle size. Furthermore, the cathodic branch of the 

polarization curve for X70 steel positively shifted with increasing particle size, and the cathodic 

oxygen reduction process was also accelerated [29, 30]. There are also several studies regarding the 

electrochemical properties of X70 steel in other solution media, such as 42SONa  aqueous solution, 

laminar flow cooling water, a simulated solution of pipe crude oil, protic ionic liquids (PILs) and 

oilfield-produced water [31-35]. 

Overall, investigations regarding the corrosion of X70 steel were mainly focused on it in 

solutions and more concentrated in polarization. And relatively less focused on the corrosion 

evaluation of X70 steel in sand soil, heavy metal influences and a theoretical basis for the corrosion 

behaviour of X70 steel in sand soil. In this paper, a complete theoretical system for the corrosion 

behaviour of X70 steel in Zn (Ⅱ)-contaminated sand soil was established, and the effect of Zn (Ⅱ) on 

the corrosion performance of X70 in contaminated sand soil for 7 d and 35 d was also studied by 

methods based on electrochemical tests (polarization, impedance). 

 

 

2. EXPERIMENTAL PROCEDURE 

2.1 Experimental materials and pretreatment 

X70 steel was selected for these experiments, and the components are shown in Table 1. The 

X70 steel plate was wire-cut into square test samples with dimensions of 15×15×2 mm. The working 

surfaces of the samples were then ground to a smooth finish using 320-800# sandpaper and 

subsequently polished to a bright appearance with no scratches utilizing 1000-2000# sandpaper when 

submerged in water. To avoid corrosion, the samples were immediately cleaned with alcohol, dried, 
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bagged and set aside after polishing. One end of a copper wire was fixed to the non-working surface of 

the sample by tin foil. In addition to the centre 1 cm
2
 work areas, the other areas were sealed with AB 

glue. The soil sample cell had dimensions of 70.7×70.7×70.7 mm, and the two opposite faces were 

fixed with thin copper sheets of 70.7×70.7×0.2 mm to test the electrical resistivity (ρs) of the soil 

samples. 

 

Table 1. Chemical composition of X70 steel (wt. %) 

 

C Cr Si Mn P Ni Mo Cu Co V S Fe 

0.065 0.021 0.201 1.906 0.012 0.021 0.234 0.012 0.013 0.011 
<0.000

5 
Bal. 

 

To comprehensively reveal the influence of Zn (Ⅱ) in sand soil on the corrosion behaviour of 

X70 steel, six types of sand soils with various mass fractions of Zn (Ⅱ) (0.000%, 0.034%, 0.068%, 

0.170%, 0.340% and 0.680%) were chosen as the samples according to the actual situation.   

 

Table 2. Mix proportion of sand contaminated by zinc (Ⅱ) 

 

Czinc (Ⅱ) (%) msand (g) Zn(NO3)2•6H2O (g) mw (g) ρs (Ω•m) 

0.000 500 0.00 75.00 271.64 

0.034 500 0.79 74.71 15.05 

0.068 500 1.58 74.43 7.92 

0.170 500 3.95 73.56 3.80 

0.340 500 7.90 72.13 2.06 

0.680 500 15.80 69.25 1.29 

 

The composition and resistivity of different test soils were listed in Table 2. The resistivity of 

the soil samples was tested by digital AC bridge, model TH2828A (Tonghui, Changzhou of China). In 

this work, considering both the reduction in the electrochemical measurement precision with low water 

content and gap between the simulated soil corrosion with high water content and actual soil corrosion, 

a water content of 15% was selected as the parametric value. Using this value, the crystal water in the 

drug was also calculated [27]. When configuring the soil samples, a specific quantity of 23)(NOZn  

solution (thoroughly dissolved) was sufficiently mixed with a specific amount of standard soil. Then, 

the samples were placed in a sealed bag for 24 h and subsequently removed into a labelled soil sample 

cell for the next tests. Furthermore, the compact degree of the soil samples, which was controlled by 

the soil height, was identical to avoid an error caused by a difference in the void ratio. To avoid other 

irrelevant factors that may influence this experiment (such as chloride ions and microorganisms, etc.), 

pure quartz sand (CHINA ISO STANDARD SAND CO., LTD.) was applied. 
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2.2 Test and characterization 

The electrochemical tests were conducted on X70 steel samples with a work area of 1 cm
2
 after 

they were embedded in prepared sand soil contaminated by zinc (Ⅱ) for 7 d and 35 d using a CS350 

electrochemical workstation (Wuhan Corrtest Instrument Co., Ltd). In addition, the steel samples were 

embedded at the same position in the soil, and soil sample cells were covered with plastic wrap to 

prevent the evaporation of moisture. Next, the soil sample cells were placed in a JK-VO-6020 thermo 

tank. The tests were performed at a temperature of 20±1 ℃ and a humidity of 45±2% in a three-

electrode test system, which included an X70 steel working electrode, a saturated calomel reference 

electrode (SCE) and a platinum auxiliary electrode. The polarization curves were tested at a scanning 

speed of 0.5 mV/s and a scanning range relative to a corrosion potential of ±300 mV. Electrochemical 

impedance spectroscopy (EIS) was conducted at 10
-2

~10
5 

Hz and a sinusoidal AC excitation signal 

amplitude of 5 mV. The micro-/macro-corrosion morphologies (before and after rust cleaning) of X70 

steel embedded in soil samples for 35 d were acquired using scanning electron microscopy (SEM, 

Hitachi-TM 3000) and Canon 6D SLR cameras, respectively. The corrosion products were further 

tested utilizing energy dispersive spectrometry (EDS) on a Bruker Model QUANTAX combined 

spectrum analyser TM-3000. 

 

3. RESULTS AND DISCUSSION 

Clearly, the addition of zinc (Ⅱ) decreased the resistivity of the soil samples. Soil resistivity, 

which reflects the conductivity of soil, is a comprehensive and extensively studied factor in soil 

corrosion research. In general, smaller soil resistivity exhibits greater soil corrosion. However, these 

properties do not have a linear relationship because the water and salt content in soil determines the 

value of soil resistivity to a certain extent. Additionally, the water and salt contents are significantly 

different in various soils. Hence, an evaluation that is based on a simple resistivity index often leads to 

misjudgements [18]. 

 

3.1 Macro-corrosion morphology 

The macro-corrosion morphologies of X70 embedded in sand soil contaminated by various 

zinc (Ⅱ) fractions for 35 d are shown in Figures 1 and 2 (before and after rust cleaning). Figure 1 

shows that various degrees of corrosion occurred for the six group samples, and the corrosion 

increased with an increase in zinc (Ⅱ) in sand soil. Corrosion products were formed on a large number 

of X70 steels and were difficult to remove by mechanical methods. The corrosion products directly 

formed on the specimens are hard substances and presented significant variations in colour from black 

and brown to red-brown and white. Moreover, there was no significant corrosion pitting on X70 steel 

in sand soil with zinc (Ⅱ) contamination before rust cleaning, which was different with that in copper 

(Ⅱ)-contaminated soil that was previously studied [37]. This difference may be caused by a difference 

in the standard electrode potentials of zinc (Ⅱ) and copper (Ⅱ) relative to Fe. Additionally, white 

corrosion products on X70 steel increased with increasing zinc (Ⅱ) contamination in sand soil; 
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however, at a zinc (Ⅱ) content of 0.680%, the white corrosion products with a minor amount of red-

brown covered most regions. In contrast, for X70 steel in sand soil without contamination, the highest 

corrosion pitting was in the middle of the specimen, whereas limited corrosion pitting and areas that 

were not covered by corrosion products occurred at the specimen edges. This behaviour is typical of 

localized corrosion. 

 

 
 

Figure 1.  Macro corrosion morphology of X70 steel in sand soil with different content of zinc (Ⅱ) for 

35 d (Before rust cleaning): (a) 0.000%, (b) 0.034%, (c) 0.068%, (d) 0.170%, (e) 0.340%, (f) 

0.680%. 

 

 
Figure 2.  Macro corrosion morphology of X70 steel in sand soil with different contents of zinc (Ⅱ) 

for 35d (After rust cleaning): (a) 0.000%, (b) 0.034%, (c) 0.068%, (d) 0.170%, (e) 0.340%, (f) 

0.680%. 

0.000

% 

0.034

% 
0.068

% 

0.170

% 

0.340

% 

0.680

% 

0.000

% 

0.034

% 

0.680

% 

0.340

% 

0.170

% 

0.068

% 



Int. J. Electrochem. Sci., Vol. 12, 2017 

  

7674 

The macro-corrosion morphologies (Figure 2) of X70 steel in sand soil for 35 d (after rust 

cleaning) showed that in zinc (Ⅱ)-contaminated sand soil, the corrosion of X70 steel was most severe 

at a content of 0.034%. There were several deep and shallow corrosion pits that were felt by touching 

the steel specimens, which is different from that of X70 steel in sand soil without contamination. At 

zinc (Ⅱ) contents of 0.068%-0.680%, the corrosion morphology and degree of X70 were similar. The 

corrosion pits were fewer in number and shallow, and the corrosion degree was uniform over of the 

entire surface. The specimens presented a dim metallic lustre and were smooth. Generally, both the 

corrosion of X70 steel in sand soil without zinc (Ⅱ) contamination and with a low content of zinc (Ⅱ) 

(0.034%) are both considered localized corrosion. X70 steel in sand soil with a high content of zinc (Ⅱ

) (0.068%-0.680%) is considered uneven general corrosion. Nevertheless, the corrosion of X70 steel in 

copper (Ⅱ)-contaminated soil belongs to a typical localized corrosion process [37]. 

In sand soil both with a low content of zinc (Ⅱ) (0.034%) and without zinc (Ⅱ) contamination, 

the corrosion process is mainly controlled by oxygen depolarization on the cathode. When an uneven 

liquid film forms on the electrode surface due to the uneven arrangement of sand particles, a difference 

in oxygen concentration formed on the surface of electrode, and oxygen concentration cell occurred. 

The electrode potential of the anoxic area was lower than that of the oxygen-rich area. Thus, the anoxic 

area becomes the anode, and the metal was corroded [38]. In the anoxic area, more Fe
2+

 gathered in the 

liquid, and the hydrolysis of cations decreased the pH. In oxygen-rich areas, the oxygen discharge 

increased the pH, and an autocatalytic effect of the corrosion process was initiated. Thus, the corrosion 

degree in the anoxic zone became more severe, and deep corrosion pits were formed, which further led 

to the accumulation of Fe
2+

 and the formation of localized corrosion. On X70 steel in sand soil 

contaminated by a high content of zinc (Ⅱ ) (0.068%-0.680%), the coverage of Zn-containing 

compounds changed the corrosion of X70 steel to a uniform corrosion process. 

 

3.2 Microscopic corrosion morphology 

The X70 steel samples were embedded in sand soil contaminated by various contents of Zn (Ⅱ

) for 35 d, and then the sand particles on the surface were cleaned. Next, low- and high-magnification 

(×30~×1000) images of the microscopic corrosion morphology of the X70 samples (prior to rust 

cleaning) were acquired, as shown in Figure 3. In the samples without contamination (Figures 3a and 

b), there was a relatively thin corrosion product layer (light grey), a thick corrosion product layer (dark 

grey), deep corrosion pits (black) and a small amount of pitted (white) local areas on the surface of the 

X70 samples. Furthermore, needle-like and scaly corrosion products were present in the corrosion pits, 

and several micro-cracks were present on the product layer, which can be explained by Stress 

Corrosion Cracking (SCC) due to anodic dissolution and hydrogen-induced cracking [39-41]. The 

addition of zinc (Ⅱ) to sand soil increased the diversification and degree of coverage of the corrosion 

products on the X70 samples, as shown in Figures 3c-3f. The corrosion product layers were thicker 

and presented an obvious hierarchical structure. In contrast, a bud-like corrosion product (shown 

Figure 3e) is a typical morphology of iron-containing compounds and were presented in many areas. A 
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more free and sheet-tufted material (shown in Figure 3f) was the corrosion product (Zn compound) on 

the outermost layer.  

 

  

  

  
 

Figure 3. Micro morphology of X70 steel in sand soil with different contents of zinc (Ⅱ) for 35 d 

(Before cleaning rust): ( a, b) 0.000%, (c) 0. 034%, (d) 0. 068%, (e) 0.340%, (f) 0.680%. 

 

Figure 4 shows SEM micro-corrosion morphologies of the X70 samples after rust cleaning. 

Clearly, there are several differences between corrosion morphologies of the X70 samples in sand soil 

with and without zinc (Ⅱ) contaminants. When the content of zinc (Ⅱ) was 0.034%, deep-shallow 

corrosion pits substantially covered the entire surface, and the surface presented a delamination. When 

the content of zinc (Ⅱ) ranged from 0.068%-0.680%, the corrosion morphologies were similar, and 

the area and depth of corrosion pits were reduced compared with that observed at 0.034%. In addition, 

SEM corrosion morphologies at high-magnification demonstrated that local area pitting is more severe. 

(f) (e) 

(d) (c) 

(b) (a) 
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Figure 4. Micro morphology of X70 steel in sand soil with different contents of zinc (Ⅱ) for 35 d 

(After cleaning rust): (a) 0.000%, (b) 0.034%, (c) 0.068%, (d) 0.170%, (e) 0.340%, (e) 0.680% 

 

3.3. Results of EDS 

Figures 5 and 6 show the EDS test results for the distributions and mass percentages of the 

main elements, respectively, of a typical X70 steel surface after 35 d in sand soil contaminated by 

different zinc (Ⅱ) fractions (0.000%, 0.034%, 0.068%, 0.170%, 0.680%). For X70 steel in the sand 

soil without zinc (Ⅱ) contamination, Fe was evenly distributed on the surface, and O was concentrated 

in the darker areas. Moreover, there is basically no O in the white area, as shown in Figure 5. On a 

typical surface of X70 steel in sand soil with 0.170% zinc (Ⅱ) contamination, more Zn appeared in the 

corrosion products, and a shift phenomenon, which always alters or replaces each element, occurred in 

the distribution of Fe and Zn.  

(f) (e) 

(d) (c) 

(b) (a) 
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Figure 5. Surface element distribution of X70 in uncontaminated sand soil (a, b) and 0.170%-zinc (Ⅱ) 

contaminated sand soil (c, d, e). 

 

The mass percentages of the main elements for three typical corrosion areas (white, light grey 

and dark grey in Figures 6 a, b and c, respectively) on the X70 steel surface in uncontaminated sand 

were determined. The mass percentage for Fe was more than 80% in the white area, and the quality 

percentages of Fe and O (approximately 65% and 30%, respectively) were similar in light and dark 

grey areas. Specifically, fewer corrosion products were generated in the white area, whereas more 

corrosion products were produced in the light and dark grey areas, which were mainly composed of Fe 

and O elements and may be associated with 32OFe  and FeOOH, etc. In contrast, in the corrosion 

products of X70 steel in sand soil contaminated by 0.170% and 0.680% zinc (Ⅱ), the percentage of Zn 

increased to 43.5% and 53.2%, respectively, whereas Fe decreased to 19.1% and 2.6%, respectively. 

These data indicated that a large number of 
2Zn  in sand media were involved in the formation of 

e-O 

d-Zn c-Fe 

b-O a-Fe 
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corrosion products from the outside to the inside, which was accumulated through zinc-containing 

compounds that were formed by the combination of 2Zn  and OH  from the electrode surface to the 

outside layer-by-layer. However, the combination of 2Fe  and OH  was from the electrode surface to 

the inner layers, and the iron-containing compound was accumulated from the electrode surface to the 

inside, layer-by-layer. Thus, hierarchical corrosion products were formed on the surface of the 

electrode, which consisted of the outer layer of zinc-containing compounds and the inner layer of iron-

containing compounds. This also explains the phenomenon that there was more Zn than Fe in the 

corrosion products. Figure 6 also indicates that sheet-tufted material was a typical Zn-compound, 

which is consist with the micro-morphology results (3.2).  

 

 

   

  
 

Figure 6. Element mass percent of the X70 steel surface in uncontaminated sand soil (a, b, c) and 

typical zinc (Ⅱ) contaminated sand soil (d-0.170%, e-0.680%) 

 

e-0.680% 

Wt. % 

d-0.170% 

Wt. % 

c-0.000%-3 

Wt. % 

b-0.000%-2 

Wt. % 

a-0.000%-1 

Wt. % 
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3.4 Polarization curve analysis 

3.4.1 Polarization curve of X70 steel at exposure time of 7 d 

Polarization curves and fitting results of X70 steel embedded in sand soil and contaminated by 

various fractions of zinc (Ⅱ) are shown in Figure 7 and Table 3, respectively. Overall, as the zinc (Ⅱ) 

contamination increased, the polarization curves shifted upward, and the corrosion potential increased 

from -783 mV to -608 mV. Additionally, the corrosion of X70 steel was more controlled by the 

dissolved oxygen diffusion control of cathodic depolarization than the diffusion control of the anodic 

reaction [33-35]. This situation can be explained as follows. In the X70/sand system, a pair of 

conjugate electrochemical reactions (anodic dissolution of iron and reduction of the cathodic 

depolarizer) occurred on the surface of the X70 steel electrode due to the existence of water and 

dissolved oxygen in the liquid phase of sand soil. Then, the reactions proceeded irreversibly in the 

direction of electrode corrosion before achieving a steady-state in the system. In sand soil without zinc 

(Ⅱ) contamination, 2Fe  that was desorbed from the electrode surface directly combined with OH  in 

the cathode region. Corrosion products, such as 2Fe(OH)  and 32OFe , were subsequently formed through 

a series of reactions. The addition of zinc (Ⅱ) contamination in sand soil led to the existence of 2Zn  

in the corrosion system and the formation of 2Zn(OH)  in the cathode region. The attachment of zinc 

compounds to the electrode surface hindered both the diffusion of 
2Fe  cations to the sand media and 

the diffusion of reducing species from sand to the steel surface. To some extent, the accumulation of 
2Fe  on the electrode surface was consistent with energy spectrum analysis results (3.3). Thus, the 

corrosion potentials were increased. At zinc (Ⅱ) contents of 0.170%, 0.340% and 0.680% in sand soil, 

inflection points appeared in the strong polarization region of the anode, and the anodic branch 

presented a steep and then gentle slope, which may be due to surface state changes. In addition, the end 

slopes of the three groups of the anodic branch were significantly smaller than those at low zinc (Ⅱ) 

content. 

Tafel linear fitting results of the polarization curves at a 100 mV~200 mV (up and down) open-

circuit potential are shown in Table 3 [42]. It was concluded that the addition of Zn (Ⅱ) contamination 

in sand soil accelerates the corrosion of X70 steel. At low content zinc (Ⅱ) contamination, the 

corrosion current density of X70 steel increased rapidly with an increase in zinc (Ⅱ) content. When 

concentration of zinc (Ⅱ ) contamination was 0.068%, the corrosion current density reached a 

maximum value of 4.945 μA/cm
2
, which was an increase of more than 4 times that (1.178 μA/cm

2
) in 

sand soil without contamination. When the content of zinc (Ⅱ) contamination increased continuously 

to 0.170%, the corrosion current density of X70 steel sharply decreased to 1.620 μA/cm
2
. However, 

with a further increase of zinc (Ⅱ) content in sand soil, the corrosion current density slightly increased 

again. According to the electrochemical evaluation standards, the addition of zinc (Ⅱ) in sand soil 

strengthens the corrosion of X70 at exposure time of 7 d (slight corrosion (Ⅰ)). However, the 

corrosion of X70 samples in all zinc(Ⅱ )-contaminated soil samples generally exhibited slight 

corrosion (Ⅰ ) behaviour and only at individual contents of 0.068% and 0.680%, the corrosion 

achieved a medium corrosion (Ⅱ) designation [42]. 
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Figure 7. Polarization curves of X70 steel in contaminated sand with different zinc (Ⅱ) content 

(exposure time of 7 d): 0.000%, 0.034%, 0.068%, 0.170%, 0.340% and 0.680% 

 

Faraday's law indicates that there is an equivalent relationship between the amount of substance 

change for an electrode reaction and the amount of charge transfer [43]. The greater the corrosion 

current density, the greater the erosion effect of the medium on the material and vice versa. Generally, 

zinc (Ⅱ) contamination in sand soil promotes the corrosion of X70 steel and corrosion rates are all 

enhanced to various degrees. The sharp decrease in corrosion rate with a zinc (Ⅱ ) content of 

0.068%~0.170% indicated that the surface state of the electrode or the electrode reaction greatly 

changed. The possible reason is that the higher content of Zn
2+

 in sand soil led to the agglomeration of 

particles and appearance of larger pores [9]. Thus, the progress of hydrogen evolution reaction was 

promoted, and the corrosion rate of iron was increased by an increase in zinc (Ⅱ) contamination in 

sand soil. However, when the content of zinc (Ⅱ) was 0.170%, the adhesion of a large amount of 

reaction product particles on the electrode surface hindered the diffusion of substances and reduced the 

corrosion rate. When the contaminant content was above 0.170%, the secondary increase in corrosion 

current density could be attributed to the partial mechanical destruction of sand particles, a reaction of 

product particles, and the further advancement of the corrosion of X70 samples [29, 30]. 
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Table Error! No text of specified style in document.. Fitted results for polarization curves of X70 

steel in sand contaminated by zinc (Ⅱ) (exposure time of 7 d) 

 

Czinc(Ⅱ) (%) Icorr(μA/cm
2
) Ecorr (V) 

0.000 1.178 -0.783 

0.034 2.096 -0.762 

0.068 4.945 -0.669 

0.170 1.620 -0.713 

0.340 2.119 -0.596 

0.680 3.362 -0.608 

 

3.4.2 Polarization curve of X70 steel corroded at exposure time of 35 d 
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Figure 8. Polarization curves of X70 steel in contaminated sand with different zinc (Ⅱ) content 

(exposure time of 35d): 0.000%, 0.034%, 0.068%, 0.170%, 0.340%, and 0.680% 

 

Figure 8 shows polarization curves of X70 steel embedded in sand soil contaminated by 

various contents of zinc (Ⅱ) for 35 d. In sand soil at a low zinc (II) content (≤0.068%), there was an 

obvious Tafel linear region in the polarization curve, whereas at a high zinc (Ⅱ) content (≥0.068%), an 

inflection point appeared in the anode branches, and a new plateau appeared above it, which also 
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exhibited the change of electrode surface state in the strong polarization region of the anode. Tafel 

fitting results for the polarization curves are shown in Table 4. In sand soil with low zinc (Ⅱ) contents 

of 0.000%, 0.034%, 0.068% for 35 d, the corrosion potential of X70 steel negatively shifted with an 

increase in zinc (Ⅱ) content (from -636 mV to -746 mV). When the zinc (Ⅱ) content further 

increased, the corrosion potential presented a significantly positive shift, which was different from that 

for 7 d. 

The maximum value of the corrosion current density of X70 steel (21.376 μA/cm
2
) was 

acquired at a zinc (Ⅱ) content of 0.034%. The density value decreased and then attained a steady state 

value with a further increase in zinc (Ⅱ) in sand soil, and the corrosion rate of the X70 samples also 

correspondingly changed. Similarly, according to the standards, zinc (Ⅱ) contamination in sand soil 

deteriorated the corrosion of X70 on the basis of moderate corrosion (Ⅱ) behaviour at exposure time 

of 35 d. However, in all zinc (Ⅱ)-contaminated soils, the corrosion of X70 samples generally belongs 

to the slight corrosion (Ⅰ) category, whereas at an individual content of 0.034%, severe corrosion (IV) 

occurred to the X70 steel. In addition, the corrosion degree grade of all X70 samples generally 

decreased with an increase in exposure time (changing from slight corrosion (Ⅰ) at exposure time of 7 

d to moderate corrosion (Ⅱ) at 35 d) [40]. According to solubility product principles, OH
-
 will 

preferentially react with Fe
2+

 when Zn
2+

 and Fe
2+

 are simultaneously present in the solution and OH
-
 

will react with Zn
2+

 when the Zn
2+

 content is sufficiently high. As described above, the presence of 

zinc (Ⅱ) had two roles: accelerating and inhibiting the corrosion of X70 steel. The presence of zinc (

Ⅱ) also accelerated the corrosion of X70 steel, and at high zinc (Ⅱ) content, the corrosion accelerated 

more rapidly. When the zinc (Ⅱ) content was low (0.034%), the pores in the sand layer were still 

small, the micro-battery was greater and the active area was larger [9]. Hence, the maximum value of 

the corrosion rate was attained. With an increase in zinc (Ⅱ) contamination, the sand layer pores 

became larger, and the increase in corrosion products coverage on the electrode surface hindered the 

diffusion of the substance, thereby protecting the electrode from corrosion. A further increase of zinc (

Ⅱ) promoted the balance between the adsorption and desorption of the corrosion product layers. Thus, 

the corrosion rate was stable at high zinc (Ⅱ) content. 

 

Table 4. Fitting results of polarization curves for X70 steel in zinc (Ⅱ) contaminated sand soil 

(exposure time of 35 d) 

 

Czinc (Ⅱ) (%) Icorr (μA/cm
2
) Ecorr (V) 

0.000 3.629 -0.637 

0.034 21.38 -0.679 

0.068 6.178 -0.746 

0.170 5.171 -0.642 

0.340 5.578 -0.608 

0.680 5.005 -0.592 
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From Table 4, we also concluded that the addition of zinc (Ⅱ) in sand soil promotes the 

corrosion of X70 steel. The corrosion current density of X70 steel in different sand soils for 35 d was 

higher than that in various sand soils for 7 d, and the protection of corrosion products decreased. This 

behaviour may relate to the continuous growth of the corrosion product layer that caused a continual 

rise in internal stress, which collapsed the cracks. Moreover, the substrate was re-exposed to the 

corrosive medium [34, 35]. Because of the larger pores in contaminated sand soil with higher zinc (Ⅱ) 

content, the corrosion of X70 steel progressed faster, and the interface rapidly reached a steady state. 

Thus, the corrosion current density fluctuated at approximately 5 μA/cm
2
 when the content of zinc (Ⅱ) 

was above 0.068%. 

 

3.5 EIS analysis 

EIS sensitively shows the change at the interface of the metal/sand layer. In sand soil, a sand 

layer with large resistance and small capacitance is equivalent to an insulating layer that prevents or 

delays the permeation of electrolyte solution into the interface of the metal/sand layer [45, 46]. Thus, 

the sand layer acts like a protective layer of metal. At a certain exposure time, the electrolyte solution 

permeated the interface of the metal/sand layer and a corrosion microcell was formed. The 

corresponding EIS data exhibited two time constants [45, 46]. EIS in the high-frequency region is the 

response of the capacitance and resistance (Cs, Rs) for the sand layer near the metal, whereas EIS in a 

low-frequency region is the response of the double-layer capacitance at the interface (Cdl), polarization 

resistance and corrosion reaction resistance (Rct) for the metal. 

 

3.5.1 EIS of X70 steel corroded at exposure time of 7 d 

Figure 9 shows the EIS data of X70 steel in six types of sand soil with different contents of zinc 

(Ⅱ) contamination after for 7 d. The results show that when the zinc contamination in sand soil 

increased, the EIS data changed from a two-capacitive arc to an incomplete capacitive arc (high 

frequency), a complete capacitive arc (mid-low frequency) and a small inductive arc (low frequency). 

The inductive arc may be caused by metal ions formed by the activation of the working electrode [33]. 

This indicates that the Zn contaminant in sand soil influenced the corrosion process and surface state 

of X70 steel and the electrochemical polarization. The concentration polarization simultaneously 

existed in the cathodic process of the metal electrode [35, 36]. Overall, the addition of zinc (Ⅱ) in sand 

soil decreased the capacitive arcs. Furthermore, the minimum and maximum arcs in contaminated sand 

soil were successively acquired in sand soil with 0.068% and 0.170% zinc (Ⅱ), respectively. In sand 

soil without zinc (Ⅱ) contamination, the two complete and large capacitive arcs indicated that, in 

addition to the electrode potential (E), there was another variable state during the surface process of the 

X70 steel electrode after being exposed for 7 d. In zinc (Ⅱ)-contaminated sand soil, the impedance 

spectroscopy measurements presented capacitive arcs that are much smaller than those in sand soil 

without zinc (Ⅱ), especially in the high-frequency region. This behaviour may be explained by a 
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change in properties of the sand layer (electrical resistivity (ρs), Cs and Rs) due to the permeation of 

the electrolyte solution into the sand soil. 
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Figure 9. EIS of X70 steel in contaminated sand with different zinc (Ⅱ) content (exposure time of 

7d): 0.000%, 0. 034%, 0.068%, 0.170%, 0.340%, 0.680% 

 

To better analyse the change process of metal/sand layer system, EIS data of X70 in sand soil 

without and with a low content of zinc (Ⅱ ) (0.000%, 0.034% and 0.068%) were fitted by the 

equivalent circuit (Figure 10A). In this work, the EIS data were fitted through ZsimDemo software, 

and the results are shown in Figures 11(a), (b), (c) and Table 5. Alternatively, the EIS data of X70 in 

sand soil with a high content of zinc (Ⅱ) (0.170%, 0.340% and 0.680%) were fitted by the equivalent 

circuit (Figure 10B), and the results are shown in Figure 11(d), (e) and (f), respectively, and Table 5. 

Amongst the components, Rl is the resistance of the electrolyte solution, which is too small to discuss; 

Qs is the capacitance of the sand layer; Rs is the resistance of the sand layer; Qdl is the capacitance of 

the double layer; and Rct is the charge transfer resistance. The results show that the addition of Zn (Ⅱ) 

contamination in sand soil accelerated the mass transfer process of the electrolyte, and so the EIS 

model of metal/sand changed from A to B [45, 46].  
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Figure 10. Equivalent circuit for low frequency region in EIS of X70 steel in zinc (Ⅱ) contaminated 

sand (exposure time of 7d): A, 0.000%, 0. 034%, 0.068%; B, 0.170%, 0.340%, 0.680%. 
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Figure 11. Fitted results for EIS of X70 steel in sand soil contaminated by zinc (Ⅱ) (exposure time of 

7d): (a) 0.000%, (b) 0. 034%, (c)0.068%, (d)0.170%, (e)0.340%, (f)0.680% 

 

Furthermore, the corrosion reaction of metals were also accelerated. In non/low-contaminated 

sand soil, the sand layer was a near-pure capacitance component (Qs-n≈1). With an increase in zinc (

Ⅱ) content, Rs decreased by 1~2 orders of magnitude, whereas Cs rapidly increased by several orders 

of magnitude. Moreover, countless tiny flat-plate capacitors formed the double layer of electrode 

surface, and Qdl-n (≈0.7) was generally smaller than that in solution (≈ 1) [47]. Overall, Rct also 

decreased and then reached a stable value with a magnitude of 10
5
. In low-contaminated sand soil, the 

decrease of Rct was caused by the coverage of corrosion products. With a further increase of zinc (Ⅱ), 

the coverage of the corrosion product on the metal surface hindered the transfer of charge. At higher 

fractions of zinc (Ⅱ) contamination, the relatively stable Rct may be related to the stabilization of 

active zones, corrosion product layer and sand soil particles on the steel.  

 

A B 
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Table 5. Fitted results of EIS for X70 steel in sand soil contaminated by zinc (Ⅱ) (exposure time of 

7d) 

 

Czinc(Ⅱ) 

(%) 

Rl 

(Ω·cm
2
) 

Qs 
Rs 

(Ω·cm
2
) 

Qdl 
Rct 

(Ω·cm
2
) Qs-Y0 

(Ω
-1

·cm
-2

·s
-

n
) 

Qs-n 
Qdl-Y0 

(Ω
-1

·cm
-

2
·s

-n
) 

Qdl-n 

0.000 8.04×10
-2

 5.69×10
-11

 1.00 1.90×10
5
 4.58×10

-6 
0.741 1.91×10

5
 

0.034 4.53×10
-7

 9.35×10
-11

 0.97 1.22×10
4
 6.96×10

-6
 0.712 8.63×10

4
 

0.068 6.70×10
-3

 3.92×10
-10

 0.87 8.11×10
3
 6.02×10

-6
 0.776 4.80×10

4
 

0.170 1.32×10
-2

 7.23×10
-10

 0.86 3.05×10
3
 5.73×10

-6
 0.698 1.51×10

5
 

0.340 7.14×10
2
 3.24×10

-8
 0.71 2.69×10

3
 3.32×10

-6
 0.735 1.08×10

5
 

0.680 1.38×10
3
 1.79×10

-5
 0.42 2.65×10

4
 4.07×10

-6
 0.839 1.35×10

5
 

 

3.5.2 EIS of X70 steel at exposure time of 35 d 
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Figure 12. EIS of X70 steel in contaminated sand soil with different zinc (Ⅱ) content at exposure time 

of 35d: 0.000%, 0.034%, 0.068%, 0.170%, 0.340%, and 0.680%. 

 

Figure 12 shows EIS data of X70 embedded in different sand soil samples contaminated by 

zinc (Ⅱ) for 35 d. It was concluded that in non/low-contaminated sand soil, the EIS data of X70 steel 



Int. J. Electrochem. Sci., Vol. 12, 2017 

  

7687 

at exposure time of 35 d is similar with those data at exposure time of 7 d, which consist of two 

capacitive arcs that correspond to (QsRs) for the sand layer at high frequency and (QdlRct) at low 

frequency [45, 46]. However, with an increase in zinc (Ⅱ) content, the EIS results present a capacitive 

arc and a line with an approximate 45° angle, which indicates that the diffusion process is an important 

control step in the electrode process [36]. This result can be explained by the change in sand layer due 

to the addition of zinc (Ⅱ) and the corrosion reaction process. Additionally, the EIS data of X70 in 

non-contaminated sand soil was fitted by the equivalent circuit in Figure 13A, whereas the EIS data of 

X70 in zinc (Ⅱ)-contaminated sand soil were fitted by the equivalent circuit in Figure 13B. The results 

are also shown in Figure 14 and Table 6. Similarly, the resistance of the electrolyte solution (Rl) is not 

discussed; Qs is the capacitance of the sand layer; Rs is the resistance of the sand layer; Qdl is the 

capacitance of the double layer; Rct is the charge transfer resistance; and W is the Warburg impedance. 

The results also show that the addition of zinc (Ⅱ) contamination in sand soil accelerated the mass 

transfer process of the electrolyte, and hence the EIS model of metal/sand changed from A to B [45, 

46]. However, the change occurred at a low content of zinc (Ⅱ) contamination in the sand soil 

(0.034%).  

 

 

  

 

Figure 13. Equivalent circuit for low frequency region in EIS of X70 steel in zinc (Ⅱ) contaminated 

sand (exposure time of 35d): A, 0.000%; B, 0.034%, 0.068%, 0.170%, 0.340%, 0.680%. 

 

With an increase in zinc (Ⅱ) content, the magnitude of Rct substantially fluctuated between 

10
2
~10

3
, which is attributed to the adsorption and desorption of the corrosion product layer and sand 

particles on the metal electrode. At a zinc (Ⅱ) content of 0.680%, the irregular change may be caused 

by the larger adsorption of the stable corrosion product layer. In addition, the EIS results present 

typical Warburg diffusion impedance characteristics at exposure time of 35 d, which indicate that the 

control step of the electrode reaction shifted from activation control to diffusion control [42]. These 

results can be explained as follows. In a sand medium, the material moved primarily by slow diffusion 

caused by a concentration gradient. At the beginning of the corrosion process, oxygen from pore water 

A 

B 
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and air (near the electrode) was sufficient to begin the electrode reaction. The corrosion rate was 

controlled by electrode activation. As the process of corrosion continued, the diffusion of oxygen to 

the electrode surface was hindered, and the oxygen was insufficient for the cathodic reaction. The 

control reaction also changed from an activation to a diffusion reaction. Additionally, more corrosion 

product coverage on electrode caused by Zn
2+

 in sand soil further impeded the transmission of oxygen 

and ions. An increase in salt in the electrolyte also decreased the dissolved oxygen, which further 

deteriorated the deficiency of oxygen. 
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Figure 14. Fitted results for EIS of X70 steel in sand soil contaminated by zinc (Ⅱ) (exposure time of 

35 d): (a) 0.000%, (b) 0.034%, (c) 0.068%, (d) 0.170%, (e) 0.340% and (f) 0.680%. 

 

The deviation in the degree of capacitance to an ideal state at exposure time of 35 d was larger 

than that after 7 d, as shown in Table 7. This may be related to the adherence of corrosion products to 

the electrode surface, which increased the surface roughness. Additionally, the emergence of corrosion 

pitting on electrode also changed the surface state. Thus, the value of n decreased. Moreover, the 

resistance of charged particles crossing the sand layer and electric double layer both decreased by 

approximately 1~2 orders of magnitude, which indicates a further destruction of the sand layer and an 

increase in the corrosion reaction of the metal. The Warburg impedance emerged, and the deviation 

degree of the electric double layer to an ideal state also increased. 
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Table 6. Fitted results of EIS for X70 steel in sand soil contaminated by zinc (Ⅱ) (exposure time of 35 

d) 

 

Czinc(Ⅱ) 

/% 

Rl/ 

Ω·cm
2
 

Qs 
Rs/ 

Ω·cm
2
 

Qdl 
Rct/ 

Ω·cm
2
 

Yw/ 

S
-0.5

·Ω·cm
-2

 Qs-Y0/ 

Ω
-1

·cm
-2

·s
-n

 
Qs-n 

Qdl-Y0/ 

Ω
-1

·cm
-2

·s
-

n
 

Qdl-n 

0.000 4.17×10
-2

 1.61×10
-9

 1.00 1.45×10
4
 9.11×10

-4 
0.59 2.27×10

3
 1.26×10

-7
 

0.034 1.28×10
-2

 1.93×10
-3

 0.31 8.65×10
2
 2.94×10

-9
 0.97 7.21×10

2
 5.59×10

-3
 

0.068 2.28×10
-2

 4.69×10
-9

 1.00 1.81×10
2
 6.26×10

-5
 0.31 2.34×10

3
 1.64×10

-3
 

0.170 9.37×10
-4

 5.74×10
-6

 0.42 2.73×10
2
 4.66×10

-4
 0.58 4.59×10

2
 2.05×10

-3
 

0.340 1.76×10
2
 2.97×10

-3
 0.84 3.98×10

3
 9.36×10

-4
 0.37 6.32×10

2
 4.65×10

-3
 

0.680 4.62×10
-5

 4.67×10
-3

 0.06 3.59×10
2
 3.50×10

-3
 0.68 2.6×10

13
 6.49×10

-12
 

 

 

Table 7. Fitted results for EIS of X70 steel in zinc (Ⅱ) contaminated sand (exposure times of 7 d and 

35 d) 

 

Czinc (Ⅱ) (%) 
Rct (Ω·cm

2
) Rs (Ω·cm

2
) Qdl - n 

7 d 35 d 7 d 35 d 7 d 35 d 

0.000 1.91×10
5
 2.27×10

3
 1.90×10

5
 1.45×10

4
 0.741 0.59 

0.034 8.63×10
4
 7.21×10

2
 1.22×10

4
 8.65×10

2
 0.712 0.97 

0.068 4.80×10
4
 2.34×10

3
 8.11×10

3
 1.81×10

2
 0.776 0.31 

0.170 1.51×10
5
 4.59×10

2
 3.05×10

3
 2.73×10

2
 0.698 0.58 

0.340 1.08×10
5
 6.32×10

2
 2.69×10

3
 3.98×10

3
 0.735 0.37 

0.680 1.35×10
5
 2.63×10

13
 2.65×10

4
 3.59×10

2
 0.839 0.68 

 

In terms of the corrosion mechanism, the corrosion process of X70 steel consisted of one 

anodic reaction and one cathodic reaction in non-contaminated sand soil. The anodic reaction was the 

dissolution of iron, and detailed steps are as follows: 

  eHFeOHOHFe ad  

2                     (1) 

   RDSeFeOHFeOH ad                              (2) 

OHFeHFeOH 2
2                              (3)  

Amongst them, (2) is the control step (RDS) of anodic reactions, and the subscript ad indicates 

the adsorption state. The cathodic reaction was the reduction of oxygen: 
-OeO 22                                                      (4) 

 RDSOHHOeOHO ___  222                 (5) 

__ OHe→OHHO 3222                                     (6) 



Int. J. Electrochem. Sci., Vol. 12, 2017 

  

7690 

Step (5) was the control step (RDS) of the cathodic reactions. In addition, the secondary 

reaction between the cathodic product of OH and anodic product of Fe
2+

 occurred under the influence 

of a concentration difference as follows: 

  

2
2 2 OHFeOHFe _                              (7) 

   3222 424 OHFeOHOOHFe                  (8) 

Then, iron hydroxide continuously dispersed into a variety of iron oxides under the action of 

oxygen. 

In zinc (Ⅱ)-contaminated sand soil, the corrosion process of X70 steel was consistent with one 

anodic reaction and two cathodic reactions due to the hydrolysis of zinc ions. The hydrogen evolution 

reaction is a new cathodic reaction that is based on the above corrosion process, which is as follows: 

222 HeH                                                  (9) 

The combination of Zn
2+

 and OH
-
 also generated new corrosion products. 

  

2
2 2 OHZnOHZn _                              (10) 

 

4. CONCLUSIONS 

This work demonstrated that zinc (Ⅱ) significantly affects the corrosion behaviour of X70 steel 

exposed in zinc (Ⅱ)-contaminated sand soil for 7 d and 35 d, which is different from that what was 

observed with chloride ion- and carbonate/bicarbonate-contaminated soil. Generally, the addition of 

zinc (Ⅱ) in sand soil accelerated the corrosion of X70 steel based on the protection of corrosion 

products on the electrode. Below, the following conclusions are summarized. 

(1). The corrosion of X70 steel in non/low-contaminated sand soil (Czinc (Ⅱ) ≤0.034%) was a 

localized corrosion process. In high-contaminated sand soil (Czinc (Ⅱ) = 0.068%-0.680%), the corrosion 

of X70 steel exhibited an uneven general corrosion process. Additionally, in contaminated sand soil, 

the corrosion degree of X70 was the most severe at a zinc (Ⅱ) content of 0.034%. The combined 

dissolution of iron in the anodic region and the reduction of oxygen and hydrogen in cathodic region 

led to electrode corrosion in the contaminated sand soil.  

(2). The corrosion products of X70 steel in non-contaminated sand soil were mainly composed 

of Fe2O3 and FeOOH, whereas those in zinc (Ⅱ)-contaminated sand soil were composed of inner layer 

iron-containing compounds and outer layer zinc-containing compounds. Moreover, the addition of 

Zinc (Ⅱ) in sand soil increased the coverage degree and diversification of corrosion products, such as 

needle-like and scaly corrosion products presented in corrosion pits. 

(3). The zinc (Ⅱ) contaminated sand soil accelerated the corrosion of X70 steel, especially 

with a high content of zinc (Ⅱ). Thus, the corrosion of X70 steel is still severe under a content of 

0.034% and exposure time of 35 d. At exposure time of 7 d, the corrosion rate first increased, then 

decreased and next increased with increasing zinc (Ⅱ) in sand soil, and the maximum and minimum 

values were acquired at zinc (Ⅱ) contents of 0.068% and 0.170%, respectively. At exposure time of 35 

d, the corrosion rate increased, then decreased and later approached a stable rate with an increase in 

zinc (Ⅱ) in sand soil. The maximum value was acquired at a zinc (Ⅱ) content of 0.034%. 

(4). In non-contaminated soil, the EIS data for X70 steel at exposure times of 7 d and 35 d both 

consisted of two capacitive arcs. Additionally, both arcs decreased as the corrosion progressed. In zinc 
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(Ⅱ)-contaminated sand soil, the EIS data of X70 steel at exposure time of 7 d consisted of an 

incomplete capacitance arc (high frequency), a capacitive arc (mid-low frequency) and an inductive arc 

(low frequency), whereas the EIS data of X70 steel at exposure time of 35 d consisted of an incomplete 

capacitance arc (high frequency) and a Warburg impedance (low frequency). 

The corrosion mechanism of X70 steel in sand soil contaminated by zinc (Ⅱ) changed with 

time and zinc (Ⅱ) content, which is conducive to the control of soil corrosion for X70 steel and 

provides a theoretical basis for future research. 
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