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The free amine-containing poly(o-phenylenediamine) (PoPD) nanoparticles with significant 

dispersibility in organic solvents have been synthesized by chemical oxidative polymerization of o-

phenylenediamine mono-hydrochloride salt. The epoxy coatings with different contents of PoPD 

nanoparticles (0.5 wt%, 1 wt% and 2 wt%) were then prepared by curing reaction of epoxy resin, 

amine hardener and amine containing PoPD nanoparticles. The corrosion protection properties of the 

as prepared coatings on Q235 steel were investigated by potentiodynamic polarization, open circuit 

potential (OCP) and electrochemical impedance spectroscopy (EIS) technique in 3.5 wt % NaCl 

aqueous solution for 90 days. The results indicate that the coatings with 0.5 wt% PoPD nanoparticles 

(0.5-PDEP) exhibits high anticorrosive performance, which is attributed to the improved barrier effect 

of the nano-fillers and redox catalytic capability of embedded PoPD nanoparticles with the evidence of 

scanning electron microscope (SEM) and XRD. This novel amine-containing PoPD nanoparticles give 

a promising way to enhance the anticorrosion performance of epoxy coatings and potentially have a 

wider range of applications in anticorrosion related engineering applications. 
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1. INTRODUCTION 

Metals and their alloys are widely applied in construction industry, marine, aircraft, cultural 

heritage and all aspects of life. However, they are highly susceptible to corrosion when exposed to 

corrosive environments such as soil, humidity, salinity, pH, temperature and biological organisms [1-

3]. Meanwhile, corrosion of metals has a huge impact on the economy, which costs more than US$4 
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trillion a year equivalent to ~3% of gross domestic product in the worldwide [1]. One of the most 

efficient way to protect metals against corrosion to is to cover metals with organic coating for isolating 

them from contacting corrosive environments directly [4]. However, all the organic coatings are not 

perfect barriers for providing long term corrosion protection for metals because such coatings are more 

or less permeable to corrosive species such as oxygen, water and ions [5]. Therefore, several 

mitigation methods and procedures have been developed for organic coating. Some of these control 

procedures involve adding heavy-metal as corrosion inhibitors [6]. However, heavy metal based 

corrosion inhibitors usually contain cadmium, chromium, which are highly toxic to the environment 

and human health [7]. It is therefore important to develop nontoxic, ecofriendly, and effective 

corrosion inhibitors for retarding the corrosion of metals. 

Recent trends in the design of environment-friendly anticorrosive coating have witnessed the 

utilization of conducting polymers in corrosion protection of oxidizable metals [8]. Especially, 

polyaniline (PANI) has been a superior candidate for practical applications owing to its excellent 

anticorrosion properties, ease of synthesis and reversible acid/base doping/dedoping chemistry [9]. 

Although, the mechanism of protection of metal by PANI is not explored clearly, different mechanistic 

pathways have been proposed including corrosion inhibitors, shift of electrochemical interface, anodic 

protection, and barrier protection, etc [10]. Sathiyanarayanan et al. investigated the efficient 

anticorrosion act of phosphate doped polyaniline on the steel in 0.1 N HCl, 0.1 N H3PO4 and 3% NaCl 

[11]. The results confirmed that the oxide layer was stable γ-Fe2O3 and α-Fe2O3 when iron was coated 

with PANI containing polymer binder by IR spectroscopy. Chen et al. tested 150 days of polyaniline 

emeraldine base coating on mild steel in 3.5% NaCl solutions of various pH values, which in 

combination with the observation of a Fe2O3/Fe3O4 passive film formed on steel [12]. On the other 

hand, Kinlen et al. have suggested that Fe-PANI complex is formed in the process of coating steel with 

PANI. They have believed that the complex's oxidation potential is higher than that of polyaniline, 

which promotes the reduction of oxygen by a catalytic action [13]. 

The typical procedure for fabrication of conducting polymer-based anticorrosive coatings can 

be classified into two different methods, like direct electro-deposition of conducting polymers onto 

metal substrate, or by incorporation of conducting polymers into organic coating matrix to form 

composite coatings [10]. Although One can get uniform coating on the metal surfaces by means of 

electropolymerization, it is a potential issue that corrosion-susceptible metals in the potential domain 

of the electropolymerization of polyaniline may generate oxidation or dissolution [10]. On the other 

hand, unsubstituted PANI is only soluble in several high boiling point solvent such as N-

methylpyrrolidone (NMP) or dimethylformamide (DMF) [14]. What’s more, PANI is nonfusible even 

by heating up to its decomposition temperature [15]. Hence, the modification of PANI to improve its 

solubility in organic matrix has to be taken into account. In the literature, the use of PANI 

nanomaterials as fillers for organic coatings has aroused broad interest in recent years due to their 

more significant improvement in the corrosion protection properties [16]. Nanostructured polyanilines 

can act as a bridge interconnecting more molecules and occupy small hole defects formed from local 

shrinkage during the formulation of coating, thus enhancing the integrity and durability of coatings 

systems [17, 18]. Huang et al. prepared the poly(o-toluidine)/nano-SiC composite coatings, in which 

the enhancement of corrosion protection efficiency is due to the formation of more uniformly passive 
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film on iron surface and the addition of nano-SiC particles increase the tortuosity of the diffusion 

pathway of corrosive substance [19]. The anti-corrosion behavior of PoPD nanofibers on 316L SS in 

3.5% NaCl solution was reported by Muthirulan et al, they found PoPD nanofibers exhibited excellent 

potential barrier to protect the 316L SS against corrosion in 3.5 % NaCl [20]. Gu et al. had obtained 

uniform diameters in the range of 60-80 nm of polyaniline/polyvinylpyrrolidone (PANI/PVP) 

nanoparticles. The addition of 1 wt% PANI/PVP nanoparticles significantly improved the 

anticorrosion properties of waterborne epoxy coating was measured by polarization curves and EIS 

tests [21]. Chu et al. had prepared polyaniline nanowires incorporated epoxy resin, which indicated 

that the coating containing 2 wt% polyaniline nanowires exhibited the highest impedance modulus at 

0.01 Hz is close to 1×10
11

 Ω cm
2
 after 60 days of immersion [22]. 

In the present work, we report the synthesis of poly(o-phenylenediamine) (PoPD) nanoparticles 

by chemical oxidative polymerization of o-phenylenediamine mono-hydrochloride salt. The obtained 

nanoparticles exhibit significant dispersibility in organic solvents such as in acetone, THF and ethanol. 

The epoxy composites coatings (PDEP) with 0.5 wt%, 1 wt% and 2 wt% PoPD were then prepared by 

curing reaction of epoxy 44, amine hardener and amine containing PoPD nanoparticles. The 

anticorrosion performance of PDEP on Q235 steel electrode was evaluated through a series of 

electrochemical corrosion measurements including potentiodynamic polarization, open circuit potential 

(OCP) and electrochemical impedance spectroscopy (EIS). 

 

 

2. EXPERIMENTAL  

2.1 Materials. 

The corrosion studies were conducted on Q235 samples of area 1 cm
2
. Using the EDS method, 

the chemical composition (in atomic wt%) was given in Table 1. O-phenylenediamine (oPD), 

ammonium persulfate (APS) and all other solvents were purchased from Aladdin Industrial 

Corporation. Epoxy resin (E44) and curing agent (polyamide) were purchased from Yunda Chemical 

Co. Ltd. China. All chemicals and solvent were used as received without further purification.  

 

2.2 Synthesis of soluble PoPD nanoparticles. 

The soluble PoPD nanoparticles were synthesized by following procedures [23]: In the first 

step, o-phenylenediamine (0.55 g, 5 mmol) was dissolved in 0.2 N hydrochloric acid (125 mL) in a 

beaker and ultrasonicated for 20 min to obtain a homogeneous slight yellow solution. The mixture was 

cooled to 0~2 °C using an ice bath until the precipitate appeared. Then, the precipitate was separated 

and washed with diethyl ether to obtain pure mono-hydrochloride salt. In the second step, the 0.58 g 

mono-hydrochloride salt was dissolved in 100 mL distilled water with magnetic stirring at room 

temperature for 10 min. Then, APS (1.37 g, 6 mmol) solution in 50 mL ammonia-water solution (20 

mL of 20~25% ammonia) was added to above mixture in one portion and the mixture was stirred 

continuously for 8 h at room temperature. Finally, the solid polymer was filtered and washed with 
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distilled water for several times until the filtrate became colorless. Subsequently the product was dried 

in a vacuum oven to constant weight. 

 

 
 

Scheme 1. Synthetic route for soluble PoPD 

 

2.3 Preparation of PDEP anticorrosion samples. 

The pristine Q235 electrode (10 × 10 × 10 mm) was polished with 400, 800 and 1500-grit of 

sandpapers with automatic polishing machine, then was ultrasonically washed in deionized water and 

acetone, it was finally dried under nitrogen flow and kept in a desiccator prior to painting. 

 

 
 

Scheme 2. Schematic illustration of curing reaction of PoPD nanoparticles in epoxy matrix. 

 

Scheme 2 shows the proposed curing procedures of PDEP samples. A certain amount of PoPD 

nanoparticles was dissolved in ethanol and sonicated for 0.5 h to obtain a homogenous solution. A 

precalculated E44 epoxy was added to the above solution and carefully stirred for 0.5 h, then the 

ethanol was removed by rotary evaporating. Afterward, the stoichiometric amount of polyamide (25 

wt% of E44 epoxy) curing agent was added in polymer matrix. The mixture was stirred thoroughly 

with high speed blender (PI7500 R75G1, POWTRAN) at 4000 rpm for 5 min after it was degassed in a 
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vacuum oven to remove the trapped air bubbles. Finally, the degassed mixture was poured onto Q235 

electrode with a wire bar coater, and the samples were cured at room temperature for 3 days. The pure 

epoxy as comparison was prepared by the same procedure without PoPD nanoparticles. PDEP samples 

with various PoPD contents (0~2 wt % relative to the whole quality) as denoted the neat epoxy, 0.5-

PDEP, 1-PDEP and 2-PDEP. The coating thickness was 20 ± 5 μm measured using a 

PosiTector6000FNS1 apparatus. 

 

2.4 Characterization. 

Fourier transform infrared (FT-IR) spectra was obtained on NICOLET 6700 spectrometer. UV-

vis spectrum was recorded between 230 and 800 nm using Lambda 950 spectroscope. The Raman 

spectra were measured by Renishaw inVia Reflex at the wavelength of 632.8 nm. X-ray powder 

diffraction (XRD) patterns were obtained with D8 ADVANCE diffractometer using Cu Kα radiation at 

the scan range of 2θ from 10
o
 to 80

o
. The scanning electron microscope (SEM) images of PoPD 

nanoparticles and the section of coating were taken by HITACHI S4800. The corrosion products 

formed on the Q235 substrates were characterized by SEM (EDS) and XRD. The scans of XRD 

measurement were performed in a 2θ range of 10~90° with a scan speed of 0.09° (2θ)/s. All major 

XRD peaks were assigned to the compounds listed in the PDF cards. 

The electrochemical corrosion test was conducted in 3.5 wt % NaCl solution on CHI-660E 

electrochemical workstation, with Pt plate and saturated calomel electrode (SCE) as counter electrode 

and reference electrode, respectively. The corrosion potential (Ecorr) of the coating/Q235 steel working 

electrode was obtained from the open circuit potential at the balance state of the system. For EIS 

measurement was carried out in the frequency range of 10
5
 to 0.01 Hz. Corrosion parameters from EIS 

data were fitted by using ZsimpWin software. Polarization curves were performed with 0.2 mV/s scan 

rate and started from a potential of -500 mV to +500 mV vs OCP. 

 

 

3. RESULTS AND DISCUSSION 

3.1 Characterization of soluble PoPD nanoparticles. 

FTIR spectra was used to characterize the functional groups of the synthesized PoPD 

nanoparticles, which is presented in Figure 1a. A broad band is appeared in the region 3225 cm
-1

 due 

to the stretching of hydrogen bonded −NH2, and/or −NH− groups in the polymer. The other main 

peaks located at 1620, 1502 and at 1290, 1116 cm
-1

 correspond to the stretching vibrations of quinoid 

C−C, benzenoid C−C and quinoid C−N, benzenoid C−N bonds, respectively [24]. UV-vis 

spectroscopy is used to confirm the conjugated structure of PoPD, as shown in Figure 1b. The PoPD 

nanoparticles show two absorption peaks at 290 and 423 nm in UV-vis region [25]. The absorption 

spectrum around 290 nm indicates π-π* transition associated with the phenazine unit conjugated to 

long pairs of bridging nitrogens. The absorption observed at 423 nm is attribute to excitonic transition 

in quinoid-imine units. Figure 1c shows Raman spectrum of PoPD nanoparticles. Obviously, there is a 

peak at 1153 cm
-1

 attributed to the C−H in-plane bending mode in the presence of quinoid ring. C−N 
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stretching mode of polaronic units appear at 1242 cm
-1

, which is a weak band. The Raman spectrum 

also reveals that the peaks located between 1345 and 1393 cm
-1

 are assigned to the C−N
+
 stretching 

modes of the delocalized polaronic charge carriers [25]. What's more, N−H bending deformation mode 

is situated at 1535 cm
-1

. Only a broad characteristic peak of XRD pattern appeared at 2θ =21
o
, 

indicating the amorphous nature of the conducting polymer (Figure 1d) [26]. Figure 2 presents the 

typical SEM images of PoPD nanoparticles. It is noted that the uniform PoPD solid nanoparticles with 

a diameter of ca.100 nm were successfully obtained. 

 

Table 1. Chemical composition (wt %) of the Q235 used. 

 

B C O Si Cr Mn Fe 

0.58 5.62 0.48 0.20 0.02 0.41 Bal. 

 

 
 

Figure 1. (a) FTIR, (b) UV-vis, (c) Raman spectrum and (d) XRD pattern of soluble PoPD. 
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Figure 2. Typical SEM image of PoPD nanoparticles 

 

3.2 Morphology of PDEP coatings 

To investigate the dispersion capability of PoPD nanoparticles in the epoxy matrix, the 

morphologies of PDEP coatings and neat epoxy were observed by SEM. The fracture surface of neat 

epoxy exhibits typical bamboo-like surface and an oriented brittle fracture patterns initialized from the 

cracks. The area between the oriented cracks is very smooth, due to rapid crack propagation. By 

addition of PoPD nanoparticles, the cross-section of PDEP coating is coarse and fracture cracks 

propagation is disturbed. As shown in Figure 3b, with the less amount of the PoPD nanoparticles (0.5 

wt %), it can obtain a highly disperse PDEP. 

 

 
 

Figure 3. Typical SEM images of cross-section from (a) neat epoxy, (b) 0.5-PDEP, (c) 1-PDEP, (d) 2-

PDEP. 
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3.3 Electrochemical analysis 

The corrosion performance of as prepared coatings was evaluated by potentiodynamic 

polarization curves, open circuit potential (OCP), electrochemical impedance spectroscopy (EIS) 

measurements, respectively. All the electrochemical measurements were conducted with 3 replicates, 

and the representative results are discussed in the following.  

Figure 4 displays the Tafel plots for neat epoxy, 0.5-PDEP, 1-PDEP and 2-PDEP composite 

coated steel samples and uncoated steel in 3.5 wt % NaCl solution under potentiodynamic polarization 

conditions after 90 days of immersion. The corrosion protection of the synthesized PoPD nanoparticles 

coated steel can be observed from the values of the corrosion potential (Ecorr), corrosion current (icorr) 

as listed in Table 2. Generally, a higher Ecorr value represents a good anticorrosion property of the 

coating and a lower icorr value indicates slow corrosion rate [27]. As seen from the tafel plots, the 

coated polymer coatings possess a larger positive Ecorr than the bare Q235, which reveals the obvious 

protection from the polymer coatings. The Ecorr values of 0.5-PDEP, 1-PDEP and 2-PDEP are -0.347, -

0.426, -0.569 V, respectively. With the increase PoPD content, the Ecorr gradually decrease. icorr was 

obtained through extrapolation of the straight line along the linear portion of the anodic and cathodic 

polarization curves to the Ecorr axis to obtain the intersection point. Polarization resistance (Rp) was 

calculated by applying the following Stern−Geary equation [27]: 

                      (1) 

where icorr is the corrosion current (μA/cm
2
), which was determined via the intersection of the 

anodic and cathodic lines and ka and kb (ΔE/Δlog icorr) are the anodic and cathodic slopes, respectively. 

The corrosion rate (CR, mm/year) was calculated to analyze the anticorrosion performance of the 

coatings quantitatively. The corrosion rate (CR) was calculated using the following formula [10]: 

                             (2) 

where icorr is the corrosion current (A/cm
2
), k is a constant (3268.6 mol/A), M is the molecular 

weight of Fe (56 g/mol), and ρm is the density (7.85 g/cm
3
). 

 
Figure 4. Tafel plots for different coatings after immersion in 3.5 wt % NaCl aqueous solution for 90 

days. 
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It is well known that the cathodic and anodic of corrosion process could be separated by the 

PoPD nanoparticles and the cathodic reaction was changed to be the reaction between the PoPD 

nanoparticles. As compared to cathodic Tafel slope (βc), the higher values of βa for the coated steel 

indicated that the application of external current strongly polarized the anode. The development of 

PoPD nanoparticles containing coating on the steel surface highly influenced the ka values, as a 

consequence of which the anodic dissolution was decelerated [10, 18]. As shown in Table 2, the neat 

epoxy coated Q235 only has a low Rp value of 0.797 kΩ cm
2
 after 90 days of immersion. Such lower 

value of polarization resistance (Rp) implied that the coating can’t afford good barrier to resist the 

corrosion [19]. When pure epoxy coating is immersed in saline media, corrosion-assisting small 

molecules, such as O2 and H2O or ions (Na
+
, Cl

−
) can easily penetrate into the epoxy film and directly 

contact with the steel surface, so corrosion takes place immediately [28]. While adding excessive 

amounts of PoPD nanoparticles, polarization resistances negatively shift, and the corrosion rate 

gradually increase. As 0.5-PDEP have maintained to a high value as 190 kΩ cm
2
 after 90 days of 

immersion in saline media, indicating better corrosion protection than other coatings. 

 

Table 2. Electrochemical parameters calculated from the potentiodynamic polarization curves of 

anticorrosion coatings in 3.5 wt% NaCl solution. 

 

Samples Ecorr (V) icorr (μA/cm
2
) 

βa  

(mV dec
-1

) 

βc  

(mV dec
-1

) 

Rp 

(KΩ∙cm
2
) 

CR 

(mm/year) 

Bare Q235 -0.702 10.15 67.13 327.3 2.38 0.237 

Neat epoxy -0.664 1.506 206.3 190.4 25.58 0.035 

0.5-PDEP -0.347 5.375×10
-3

 217.3 155.7 8.2×10
3
 1.25×10

-4
 

1-PDEP -0.426 6.395×10
-2

 208.5 205.6 702.7 1.49×10
-3

 

2-PDEP -0.569 5.185×10
-1 

182.4 304.9 95.58 1.21×10
-2

 

 

The variation of OCP with time for the as prepared coatings in 3.5% NaCl is shown in Figure 

5. The initial OCP values of the pure epoxy coated steel is -0.464 V vs SCE. After 90 days of exposure 

to 3.5 wt % NaCl solution, the OCP value of the pure epoxy gradually decrease to -0.698 V SCE. 

Initially, the OCP value of the 0.5-PDEP coated steel is about -0.04 V vs SCE while those of the 1-

PDEP and 2-PDEP coated steel are -0.211 and -0.195 V vs SCE, respectively. The OCP values of all 

the samples containing PoPD nanoparticles are shifted to noble region after 12 days of immersion, 

indicating that PoPD nanoparticles in the coatings are able to passivate the iron surface in 3.5 wt % 

NaCl media [10]. It also can be observed that the 0.5-PDEP exhibits higher OCP value than those of 

the 1-PDEP and 2-PDEP coated steel. In fact, for 0.5-PDEP, the OCP remains at -0.31 V vs SCE even 

after 90 days of exposure to saline solution, demonstrating the best anticorrosive performance. 

EIS is used to investigate the protective nature of the coatings by measuring the coatings 

resistance (Rc) and the coatings capacitance (Qc) of the coatings [29]. Coatings with high resistance 

values (>1×10
7
 Ω cm

2
) and low capacitance values (<1×10

-9
 F cm

-2
) have been found to offer 
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corrosion protection of steel [30]. Impedance plots (Bode plots, impedance versus frequency) of the 

neat epoxy, 0.5-PDEP, 1-PDEP and 2-PDEP coated Q235 steel after 90 days of immersion in 3.5% 

NaCl solution are shown in Figure 6. Usually, the impedance modulus at the lowest frequency 

(Zƒ=0.01Hz) in Bode plot could be used as a semi-quantitative indicator of coating’s barrier performance. 

The Bode-modulus plots of neat epoxy show a high Zƒ=0.01 Hz value (1.11×10
10

 Ω cm
2
) at the onset of 

immersion (Figure 6a1). Even that initial value of neat epoxy is higher than other three coatings. 

However, the Zƒ=0.01 Hz value of neat epoxy gradually decrease to 3.97×10
5
 Ω cm

2
 after 90 days of 

immersion, which indicates small molecules (H2O and O2 or ions) could easily penetrate epoxy coating 

and degrades substrate. While for all the epoxy coatings containing PoPD nanoparticles, Zƒ=0.01 Hz of 

PDEP can be maintained at relatively high values after 90 days of immersion, indicating the better 

corrosion protection. For the specific impedance behavior of 0.5-PDEP, 1-PDEP and 2-PDEP. The 

Zƒ=0.01 Hz values of 1-PDEP and 2-PDEP are found to decrease from 1.2710
9
 Ω cm

2
 and 7.7610

8
 Ω 

cm
2
 at the onset of immersion to 1.3810

8
 Ω cm

2
 and 1.8110

7
 Ω cm

2
 after 60 days of immersion. 

Afterward, the Zƒ=0.01 Hz values of two coatings increase to 1.7410
8
 and 2.3310

7
 Ω cm

2
 after 70 days 

and reach 2.4310
7
 and 7.1510

6
 Ω cm

2
 after 90 days of immersion. Initially 0.5-PDEP has a Zƒ=0.01 Hz 

value of 5.9410
9
 Ω cm

2
 that increases to 4.3110

10
 Ω cm

2
 after 6 days of immersion, then the Zƒ=0.01 

Hz value decreases to 4.2110
8
 Ω cm

2
 after 60 days of immersion. There is a weak gain in Zƒ=0.01 Hz 

value of 1.2410
9
 Ω cm

2
 after 70 days, and it reach 7.2510

7
 Ω cm

2
 after 90 days of immersion. All 

three PDEP coatings, the increased Zƒ=0.01 Hz values after an initial decrease can be attributed to the 

passivation effect of PoPD nanoparticles [22]. Also, it is observed that 0.5-PDEP always maintained 

the shape of two-time constant capacitive loops (Figure 6d1). Moreover, the long-term anticorrosion 

performance of 0.5-PDEP could also be reflected by the high phase angles (∼-83°) during the whole 

immersion period (Figure 6d3). 

 
 

Figure 5. Open circuit potential of different coatings during the immersion of 90 days in 3.5 wt % 

NaCl solution 

 

The EIS results are further fitted by ZsimpWin software using the equivalent electric circuits 

shown in Figure 7, where Rs is the solution resistance, Rc and Qc denote coating resistance and coating 

capacitance, respectively. Qdl represents a double-layer capacitance and Rct is a charge transfer 



Int. J. Electrochem. Sci., Vol. 12, 2017 

  

3427 

resistance [27]. The fitting results are shown in Figure 7b. It can be seen that the Rc of neat epoxy 

gradually decreases from 1.02 × 10
10

 Ω cm
2
 to a much lower value (2.86 × 10

5
 Ω cm

2
). The Rc values 

of 1-PDEP and 2-PDEP decrease to 1.97 × 10
7
 and 6.76 × 10

6
 Ω cm

2
, while the 0.5-PDEP coating is 

one or two order of magnitude higher than 1-PDEP and 2-PDEP after the immersion of 90 days. The 

Rc indicates the decrease in corrosion protection ability of the coating. Consequently, it is observed 

that 0.5-PDEP exhibited the outstanding corrosion resistance, which was consistent with the 

potentiodynamic polarization results. From the above results, we can conclude that the well-dispersed 

nanoparticles in the epoxy matrix enhance shielding function and also increase the tortuosity of 

diffusion pathway of H2O, O2 and electrolyte [32, 33]. This multifunction effect leads to the excellent 

anticorrosion performance of 0.5-PDEP coatings. 

 
Figure 6. Nyquist plots of (d1) 0.5-PDEP and Bode plots of (a1) (a2) neat epoxy, (b1) (b2) 1-PDEP, (c1) 

(c2) 2-PDEP, (d2) (d3) 0.5-PDEP during 90 days of immersion in 3.5 wt% NaCl solution. 
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Figure 7. (a) Equivalent electric circuits and (b) the fitting results of the collected EIS results of 

different coatings as a function of immersion time.  

 

3.4 Surface Characterization  

The morphology of metal surface underneath the organic coatings after 90 day of immersion is 

shown in Figure 8. There are smaller scale of corrosive region and the nearly invisible polishing 

grooves (Figure 8b). The fresh compact layer of uniform microstructure is developed on the substrate, 

which has improved the corrosion resistance of the material. With higher content of PoPD 

nanoparticles in epoxy blend (Figure 8c, d), the interface appears as porous morphology. Meanwhile, 

cracks with the structure of corrosion products like “honeycomb” are developed on the metal surface 

[18]. However, it can also be seen that the morphology of neat epoxy coated steel shows a smooth film 

covered with mushroom like products after 90 days of exposure to saline environment (Figure 8a). The 

corresponding EDS tests (Figure 9) show that obvious chlorides are found on underlying surface 

covered for pure epoxy coating, and Na ions are appeared in the corrosion products of PDEP coatings 

[34]. 

XRD patterns were employed to further analyze the corrosion product of metal surface after the 

coatings were peeled off after 90 days of immersion in 3.5% NaCl. The metal surface underneath pure 

epoxy coating exhibites a strong characteristic peak attributed to β-FeOOH because chlorides facilitate 

the formation of rust (Figure 10) [35]. For the coatings containing PoPD nanoparticles, it is shown that 

the formation of β-FeOOH is suppressed, and the formation of obvious inert protective layer, i.e. Fe2O3 
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and Fe3O4, are observed [36, 37]. The conducting PoPD nanoparticles facilitate the formation of 

passive oxide on the steel surface and retard the aggressive anions such as chloride, water and oxygen 

from penetrating through the coating to the substrate. 

 

 
 

Figure 8. SEM images of corrosion products on the steel substrate coated by (a1, a2) neat epoxy, (b1, 

b2) 0.5-PDEP, (c1, c2) 1-PDEP and (d1, d2) 2-PDEP after 90 days of immersion. The EDS was 

given by blue box. 

 

 
 

Figure 9. EDS data (wt.% of each element) obtained from the imaged red areas in Figure8 a2 and b2 

are presented in (a) and (b). 
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Figure 10. XRD patterns of surface of Q235 coated by different coatings after 90 days of exposure to 

3.5% NaCl solution. 

 

 

 

4. CONCLUSIONS 

The amine-containing PoPD nanoparticles with enhanced solubility and reactivity were 

fabricated via a facile chemical oxidative polymerization approach, and the epoxy coatings containing 

0.5 wt%, 1 wt%, and 2 wt% PoPD nanoparticles were successfully prepared by curing reaction of 

epoxy resin, amine hardener, and amine contain PoPD nanoparticles. The corrosion behavior of the 

coatings on Q235 immersed in the 3.5 wt % NaCl solution was investigated by potentiodynamic 

polarization, the OCP versus time of exposure and EIS measurements. The results demonstrated that 

0.5-PDEP was able to offer the best corrosion protection, which was attributed to the formation of 

effective Fe2O3 and Fe3O4 passive layer distributed on the carbon steel surface evidenced by SEM and 

XRD analysis. This novel amine-containing PoPD nanoparticles give a promising way to enhance the 

anticorrosion performance of epoxy coatings and potentially have a wider range of applications in 

anticorrosion related engineering applications. 
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