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Open circuit potential, potentiodynamic polarization plots and electrochemical impedance 

spectroscopy for pyrite in 0.1 M sulfuric acid in the temperature range of 200 to 350
 
°C and pressure 

range of 25 to 40 MPa were measured, with the aid of a self-designed electrochemical measurement 

set-up which can operate at high temperature and high pressure. Results show that increased 

temperatures benefit the oxidation of pyrite: at 40 MPa, when the temperature was rised from 200 to 

350 °C, corrosion potential (Ecorr) decreased from -199.83 to -778.78 mV, corrosion current density 

(icorr) increased from 4.33 to 22.16 mA/cm
2
, polarization resistance (Rp) decreases from 34.11 to 3.85 

Ω·cm
2
, resistance of the passive layer (Rpl) decreased from 42.16 to 2.48 Ω·cm

2
. Effects of pressure 

were also considered, at 300 °C, when pressure was increased from 25 to 40 MPa, Ecorr decreased from 

-621.48 to -713.25 mV, however, icorr and Rp rarely changed. 
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1. INTRODUCTION 

Pyrite, the most common iron sulfide mineral, is rarely of economic value. However, it often 

appears together with other valuable metal minerals, gold for example. Refractory gold is often found 

finely disseminated in the lattice of pyrite [1], acid pressure oxidation at high temperatures [2] is an 

effective method to break down the pyrite lattice and enhance gold collection in the following 

cyanidation. 

Acid pressure oxidation of pyrite has been practiced commercially since 1980s [3], much 

research has been performed in this field. Acid pressure oxidation of pyrite, which is controlled by 
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surface reaction rate [4], involves a series of complex reactions to produce ferrous and ferric ions, 

sulfate ions, and elemental sulfur [5]. The relevant amount of the products are determined by applied 

conditions, such as temperature, acidity, and oxygen partial pressure. Baily and Peters [6] studied the 

acid pressure oxidation of pyrite at 85 to 130 °C, they convincingly demonstrated that the acid pressure 

oxidation of pyrite was an electrochemical process, and the anodic reaction could be represented by the 

two competing reactions: 

FeS2 + 8H2O → Fe
2+

 + 2SO4
2-

 + 16H
+
 + 14e

-
 

FeS2 → Fe
2+

 + 2S + 2e
- 

They also claimed that at temperatures exceeding the melting point of elemental sulfur, a liquid 

sulfur passive film enveloped the pyrite surface, resulting in cease of the oxidation after about 65% 

conversion. Papangelakis and Demopoulos [7] investigated the acid pressure oxidation of pyrite in the 

temperature range of 140 to 180 °C and proposed a shrinking core model to fit the reaction kinetics, 

they also found that the acid pressure oxidation of pyrite completed only at temperatures above 160 °C. 

Long and Dixon [4] studied the acid pressure oxidation of pyrite at 170 – 230 °C, they claimed that the 

reaction mechanism was electrochemical, and ferric ion was the initial product of the reaction, a 

passivating shrinking sphere model was proposed to fit the reaction kinetics in their work. 

In previous studies, researchers investigated the acid pressure oxidation of pyrite mainly by 

examining the changes in the amount of reactants and products after the system was cooling down, 

reaction kinetics and mechanism were then deduced from such information. However, the method is 

unsatisfactory in some ways. Firstly, the method is ex-situ, researchers measured the amount of 

reactants and products after cooling down, it is hard to quantify variation in the amount of reactants 

and products that may take place in the cooling process, which introduces uncertain errors to the 

experimental results; secondly, solid-liquid interface is the place where pyrite oxidation takes place, 

information of such interface is crucial in understanding the reaction mechanism, unfortunately, the 

previous method gave little information about this interface.  

Considering the limiting of the previous research method, an informative and accurate in-situ 

research technique is quite necessary. Electrochemical measurement technique is a powerful tool in the 

oxidation research of materials, which has already been widely employed in pyrite oxidation research 

at room temperature [8-11]. Given that it is well accepted by researchers that the mechanism of pyrite 

acid pressure oxidation is electrochemical [4, 6], it is feasible to study the acid pressure oxidation of 

pyrite with electrochemical measurement technique in principle. The application of electrochemical 

measurement technique at high temperature and high pressure appeares mainly in corrosion studies of 

metallic materials [12-14]. Unfortunately, limited by experimental technique, there was no report of 

three-electrode electrochemical investigation into pyrite acid pressure oxidation at temperatures above 

200 °C so far. 

In this work, electrochemical investigation of pyrite acid pressure oxidation in 0.1 M sulfuric 

acid was performed in the temperature range of 200 to 350 °C and pressure range of 25 to 40 MPa, 

with the aid of a self-designed experimental set-up for three-electrode electrochemical measurement in 

high temperature and high pressure fluids. The effects of temperature and pressure on pyrite acid 

pressure oxidation behaviors were studied by the measurements of open circuit potential (OCP), 

potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). 
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2. EXPERIMENTAL 

The experimental set-up used in this work was detailed described in another paper of our group 

[15]. In this set-up, the electrodes are sealed by pyrophyllite taper sleeve with a conical self-energizing 

sealing structure, this design enables the set-up to employ fragile material as working electrode.  

The working electrode in this work was a pyrite cone frustum, which was made from a big 

monocrystal pyrite with the aid of a lathe. The counter electrode was a self-made alumina ceramic 

cone frustum with a platinum wire inside, platinum power was sintered on the round surface of the 

ceramic to achieve sufficient counter electrode surface area. An external pressure-balanced Ag/AgCl 

electrode filled with 0.1 M KCl was utilized as the reference electrode. In present work, the calibrated 

equation of the electrode potential was following [16]: 

ΔESHE = ΔEobs + 286.6 – ΔT + 1.745 × 10
-4

ΔT
 2

 – 3.03 × 10
-6

ΔT
 3

 (mV)  

All potentials mentioned in this work are normalized with respect to the saturated hydrogen 

electrode (SHE) using the formula above. The pyrite working electrode was primarily abraded with 

1000, 2000, and 2500-grit SiC paper in turn, then washed by alcohol and deionized water. Silver 

conductive paste that can be used at high temperatures was employed to connect the electrodes with 

silver wires. All conducting wires were isolated by alumina ceramic tubes. 

To avoid the oxidation of pyrite when heated, high purity argon was introduced into the 

autoclave to drive the air out before heating. As the autoclave was heated to the set temperature, 1 mL 

30% hydrogen peroxide and proper amount of 0.1 M sulfuric acid were pumped into the autoclave 

using a pressure pump, until the pressure reached the desired value. When hydrogen peroxide was 

pumped into the hot autoclave, it decomposed into oxygen and water immediately:  

2H2O2 → 2H2O + O2 

To make sure that all oxygen dissolve in the solution, the pressure in the experiments was set 

not less than 25 MPa [17], the oxygen concentration in all experiments was 0.16 mol/L. 

Electrochemical measurements were conducted using a Princeton 2263A electrochemical test 

station and Powersuit software. EIS studies at open circuit potential were performed 5 minutes after 

the solutions was pumped in, the frequency was ranged from 100 kHz to 100 mHz, and the AC 

amplitude was 10 mV. Potentiodynamic polarization plots were measured after the EIS tests, the scan 

was ranged from -250 to 250 mV relative to the open circuit potential at a scan rate of 1 mV/s. 

Software ZSimpWin and CorrView were employed to fit the EIS and potentiodynamic polarization 

data, respectively. All chemical reagents used in this work were of analytical grade. 

 

 

 

3. RESULTS AND DISCUSSION 

3.1 Effects of temperature 

Fig.1 shows the open circuit potential of the pyrite electrode at 200, 250, 300 and 350 °C, when 

the pressure is 40 MPa. It can be seen that the open circuit potential decreases with increasing 
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temperatures. As the temperature increases from 200 to 350 °C, the open circuit potential decreases 

from -189.5 to -771.8 mV. According to Gibbs-Helmholtz equation: 

P

G
S

T

 
  

 
 

While, ∆G = −nEF  

Thus, 
P

E
S nF

T

 
   

 
 

Q = T∆S =
P

E
nFT

T

 
 
 

  

where ∆G is Gibbs free energy change, ∆S is reaction entropy change, T is temperature, P is 

pressure, n is number of electron transfer, E is electrode potential, F is Faraday constant, Q is reaction 

heat. 
P

E

T

 
 
 

 represents the change in electrode potential with temperature when the pressure is 

constant, it is negative in this work, thus, the reaction heat Q is also negative, indicating the acid 

pressure oxidation of pyrite is an exothermic reaction.  

 

 
 

Figure 1. Open circuit potential for pyrite in 0.1 M sulfuric acid at different temperatures when the 

pressure is 40 MPa. 

 

The potentiodynamic polarization plots for pyrite in 0.1 M sulfuric acid in the temperature 

range of 200 to 350 °C at 40 MPa are shown in Fig. 2. It can be seen that the corrosion potential 

decreases with the increased temperatures, whereas the current density increases with the increased 

temperatures. Linear fitting was performed in the potential range of Ecorr – 200 mV to Ecorr – 100 mV 

for the cathodic branch, and Ecorr + 100 mV to Ecorr + 200 mV for the anodic branch. In the selected 

potential range, the polarization plots show good linearity, indicating that the reaction is under 

electrochemical control. Electrochemical kinetic parameters such as corrosion potential (Ecorr), 

corrosion current density (icorr), and Tafel slope (βa, βc) were obtained through Tafel fitting. Transfer 
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coefficient (α), number of electrons transferred in the rate-determining step (n) and polarization 

resistance (Rp) were also calculated using the Bulter-Volmer equation [18] and the Tafel slopes 

obtained by Tafel fitting. The results are presented in Table. 1.  

 

Table 1. Electrochemical kinetic parameters of pyrite in 0.1 M sulfuric acid in the temperature range 

of 200 to 350 °C at 40 MPa. 

 

Temperature 

(°C) 

Ecorr  

(mV) 

icorr  

(mA/cm
2
) 

βa  

(mV/decade) 

βc  

(mV/decade) 

Rp 

(Ω·cm
2
) 

α n 

200 -197.34 4.33 209.21 502.51 34.11 0.29 0.28 

250 -496.20 5.09 212.31 384.62 26.88 0.36 0.33 

300 -713.25 17.63 237.53 155.44 5.33 0.61 0.52 

350 -778.78 22.16 270.27 124.53 3.85 0.68 0.63 

 

 

 

 

Figure 2. Potentiodynamic polarization curves for pyrite in 0.1 M sulfuric acid in the temperature 

range of 200 to 350 °C at 40 MPa. 

 

As shown in Table 1, Ecorr decreases from -199.83 to -778.78 mV when the temperature 

increases from 200 to 350 °C. It can be noted that, at all the studied temperatures, the value of Ecorr is 

negative to the value of the open circuit potential in Fig. 1, the phenomenon can be attributed to the 

following two reasons: firstly, the reducing initial potential causes the change of the pyrite surface 

state, resulting in the negative shift of the electrode potential; secondly, the disturbance of double layer 

charging current in the positive scan [19]. Table 1 also shows that, as the temperature increases from 

200 to 350 °C, icorr increases from 4.33 to 22.16 mA/cm
2
, βa increases from 209.21 to 270.27 

mV/decade, βc decreases from 502.51 to 124.53 mV/decade, and Rp decreases from 34.11 to 3.85 

Ω·cm
2
. The change in icorr and Rp demonstrates that increasing temperatures promote the oxidation of 

pyrite. Moreover, transfer coefficient (α) increases from 0.29 to 0.68, and the number of electrons 
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transferred in the rate-determining step (n) increases from 0.28 to 0.63 as the temperature rises from 

200 to 350 °C. The change in α and n reveals different electrochemical interaction mechanisms when 

the temperature rises.  

The average activation energy Ea for pyrite oxidation in 0.1 M sulfuric acid at 40 MPa in the 

temperature range of 200 to 350 °C was calculated according to Arrhenius equation. The result is 29.8 

kJ/mol, which is lower than the results in literatures at lower temperatures [4, 7]. 

 

 
 

Figure 3. Arrhenius plots for pyrite in 0.1 M sulfuric acid at 40 MPa. 

 

Fig. 4a, b, c and d shows the Bode and Nyquist plots for pyrite in 0.1 M sulfuric acid in the 

temperature range of 200 to 350 °C at 40 MPa. The Bode plots reveal two time constants, which are 

related to the capacitance and resistance of the double-layer and the passive layer at the pyrite surface, 

respectively. The equivalent circuit in Fig. 4e is employed to fit the experimental impedance data. In 

the equivalent circuit, Rs represents the ohmic resistance of the electrolyte and electrodes, Qct and Rct 

represent the capacitance and resistance of the double-layer at pyrite surface, while, Qpl and Rpl 

represent the capacitance and resistance of the passive layer. The passive layer here is the liquid 

elemental sulfur generated in the oxidation of pyrite [7]: 

FeS2 + O2 + H2O → Fe
3+

 + SO4
2-

 + S + H
+
                                       

Q is the constant phase angle element to replace the interfacial capacitance due to the surface 

roughness of the electrode [20], which is defined as [21]: 

0 0 0( ) cos sin
2 2

n n nn n
Q Y j Y jY

 
                        

where Y0 is a constant depending on the electrode potential, and nis the frequency power. The 

interfacial capacitance C can be obtained through the following equation [22]: 
1

0( )n

mC Y                                       

ωm is the angular frequency at which the imaginary part of the impedance has the maximum 

value. The results are listed in Table 2. 
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Figure 4. Nyquist plots (a), Bode plots (c) at 200 and 250 °C, Nyquist plots (b), Bode plots (d) at 300 

and 350 °C and the equivalent circuit (e) for pyrite in 0.1 M sulfuric acid at 40 MPa. 

 

Table 2. Impedance parameters of pyrite in 0.1 M sulfuric acid in the temperature range of 200 to 350 

°C at 40 MPa. 

 

Temperature 

(°C) 

Rs  

(Ω·cm
2
) 

          Qct  
Rct  

(Ω·cm
2
) 

          Qpl  
Rpl  

(Ω·cm
2
) Y0 n  

C 

(F/cm
2
) 

Y0 n  
C 

(F/cm
2
) 

200 12.35 2.09E-5 0.72 9.67E-7 12.57 4.74E-3 0.81 3.39E-3 42.16 

250 10.53 2.81E-5 0.79 2.91E-6 6.86 5.54E-3 0.77 4.14E-3 28.75 

300 9.16 1.95E-3 0.62 4.00E-5 1.66 1.30E-2 0.67 6.53E-3 2.65 

350 4.95 2.83E-3 0.79 7.24E-4 0.56 0.11 0.60 2.19E-2 2.48 

 

As shown in Table 2, C of Qct increases from 9.67E-7 to 7.24E-4 F/cm
2
, Rct decreases from 

12.57 to 0.56 Ω cm
2
, C of Qpl increases from 3.39E-3 to 2.19E-2 F/cm

2
, and Rpl decreases from 42.16 

to 2.48 Ω cm
2
 when the temperature increases from 200 to 350 °C. The decrease in Rct and the increase 

in C of Qct indicate that increasing temperature benefits the charge transfer step through the double-

layer. While, the decrease in Rpl and the increase in C of Qpl show that increasing temperature weakens 

the passive layer at the pyrite surface. Firstly, the viscosity of liquid sulfur decreases from 21.5 to 0.50 

Pa ∙ s when the temperature rises from 200 to 350 °C [23], the decrease in viscosity of liquid sulfur 

reduces the resistance for the mass transfer process though the passive layer; Secondly, increasing 

temperature accelerates the diffusion and oxidation of the liquid sulfur, reducing the thickness of the 

passive layer. 
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3.2 Effects of pressure 

Fig. 5 shows the potentiodynamic polarization plots for pyrite in 0.1 M sulfuric acid in the 

pressure range of 25 to 40 MPa at 300 °C. The potentiodynamic polarization plots are similar in shape, 

but exhibit some differences in Ecorr and Tafel slopes, the fitting results are presented in Table 3. The 

results show that Ecorr decreases from -621.48 to -713.25 mV, βa decreases from 258.40 to 237.53 

mV/decade, and βc increases from 143.88 to 155.44 mV/decade, when the pressure increases from 25 

to 40 MPa. Moreover, the value of icorr, transfer coefficient (α), number of electrons transferred in the 

rate-determining step (n) and polarization resistance (Rp) rarely change with increasing pressure.  

 

Table 3. Electrochemical kinetic parameters of pyrite in 0.1 M sulfuric acid in the pressure range of 25 

to 40 MPa at 300 °C. 

 

Pressure 

(MPa) 

Ecorr 

(mV) 

icorr 

(mA) 

βa 

(mV/decade) 

βc  

(mV/decade) 

Rp 

(Ω·cm
2
) α n 

25 -621.48 16.11 258.40 143.88 5.73 0.64 0.54 

30 -649.51 15.95 253.81 144.72 5.77 0.64 0.53 

35 -679.55 16.15 242.72 150.04 5.74 0.62 0.53 

40 -713.25 17.63 237.53 155.44 5.33 0.61 0.52 

 

 

 

 

Figure 5. Potentiodynamic polarization for pyrite in 0.1 M sulfuric acid in the pressure range of 25 to 

40 MPa at 300 °C. 
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Figure 6. Nyquist plots for pyrite in 0.1 M sulfuric acid in the pressure range of 25 to 40 MPa at 300 

°C. 

 

The decrease in Ecorr indicates that pyrite is more active at higher pressures, pyrite gains more 

strain energy when the pressure increases, and the strain energy changes into electrochemical energy, 

thereby facilitating the oxidation of pyrite [24, 25]. The almost invariable transfer coefficient (α) and 

number of electrons transferred in the rate-determining step (n) show a constant electrochemical 

interaction mechanism when the pressure changes. 

EIS studies were also conducted to determine the effects of pressure on pyrite oxidation at 

elevated temperatures. Fig. 6 shows the Nyquist plots for pyrite in 0.1 M sulfuric acid in the pressure 

range of 25 to 40MPa at 300 °C, the equivalent circuit in Fig. 4e was used to fit the experimental data, 

and the fitting results are listed in Table 4. It can be noticed that, when the pressure increase from 25 to 

40 MPa, Rct decreases from 2.51 to 1.66 Ω cm
2
, C of Qct decreases from 1.01E-3 to 4.00E-5 F/cm

2
. 

While Rpl and C of Qpl barely change with increasing pressure.  

 

Table 4. Impedance parameters of pyrite in 0.1 M sulfuric acid in the pressure range of 25 to 40 MPa 

at 300 °C. 

 

Pressure 

(MPa) 

Rs 

(Ω·cm
2
) 

         Qct  
Rct 

(Ω·cm
2
) 

        Qpl  
Rpl 

(Ω·cm
2
) Yo n  

C 

(F/cm
2
) 

Yo n  
C 

(F/cm
2
) 

   25    4.18 2.09E-3 0.82 1.01E-3 2.51 1.22E-2 0.64 6.78E-3 2.63 

30 5.91 2.11E-3 0.63 1.85E-4 2.37 1.31E-2 0.62 6.51E-3 2.51 

35 7.66 1.57E-3 0.74 9.49E-5 1.85 1.28E-2 0.70 6.25E-3 2.58 

40 9.16 1.95E-3 0.62 4.00E-5 1.66 1.30E-2 0.67 6.53E-3 2.65 
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The decrease in Rct shows that increasing pressures promote the charge transfer step though the 

double-layer. The relatively constant Rpl and C of Qpl show that the passive film at pyrite surface is 

almost invariably with increasing pressures. 

The potentiodynamic polarization and EIS studies show that increasing pressures decrease the 

corrosion potential of pyrite, which is the same as the results of metal corrosion studies in literatures 

[26, 27].  While, increasing pressures show little impact on the corrosion rate of pyrite. Though 

increasing pressures promote the charge transfer step of anodic reaction [25], meanwhile, the viscosity 

of the liquid sulfur passive film increases with increasing pressures, resulting in hindering of the mass 

transfer step through the passive film. The corrosion current has little change with increasing pressures 

because of above opposite effects. 

 

 

4. CONCLUSIONS 

An electrochemical study of pyrite acid pressure oxidation in 0.1 M sulfuric acid was 

conducted using a self-designed experimental set-up for three-electrode electrochemical measurement 

in high temperature and high pressure fluids. Open circuit potential, potentiodynamic polarization 

curves and electrochemical impedance spectroscopy were measured at high temperature (200 - 350 °C) 

and high pressure (25 - 40 MPa). The following conclusions can be drawn: 

(1) At a constant pressure of 40 MPa, the electrode potential decreases with increasing 

temperatures, indicating that the acid pressure oxidation of pyrite is an exothermic reaction by an 

electrochemical way.  

(2) At 40 MPa, as temperature rises from 200 to 350 °C, icorr increases from 4.33 to 22.16 

mA/cm
2
, that is, the oxidation rate of pyrite at 350 °C is 5.12 times faster than at 200

 
°C. The 

potentiodynamic polarization and EIS studies show that increasing temperature not only accelerate the 

charge transfer step of acid pressure oxidation of pyrite, but also weaken the passive film at pyrite 

surface. 

(3) Different transfer coefficients and the numbers of electrons transferred in the rate-

determining step reveal different electrochemical interaction mechanisms when the temperature 

increases. 

(4) The average activation energy Ea for pyrite oxidation in 0.1 M sulfuric acid in the 

temperature range of 200 to 350 °C is 29.8 kJ/mol, lower than the results reported in literatures. 

(5) At 300
 
°C, increasing pressures decrease the corrosion potential and the resistance of 

the charge transfer step, but rarely affects the oxidation rate.  

(6) The almost invariable transfer coefficient and number of electrons transferred in the 

rate-determining step when the pressure increases from 25 to 40 MPa at 300 °C show a constant 

electrochemical interaction mechanism when the pressure changes. 
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