International Journal of ELECTROCHEMICAL SCIENCE www.electrochemsci.org

Short Communication

# Facilely Synthesized NiCo<sub>2</sub>O<sub>4</sub>/CNTs Nanocomposites for Surpercapacitors with Enhanced Performance

Dan Yang, Wenmei Qiu, Jingcai Xu<sup>\*</sup>, Panfeng Wang, Dingfeng Jin, Xiaoling Peng, Bo Hong, Hongxiao Jin, Hongliang Ge, Xinqing Wang<sup>\*</sup>

College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018, China \*E-mail: <u>xujingcai@cjlu.edu.cn</u>, <u>wxqnano@cjlu.edu.cn</u>

Received: 3 May 2016 / Accepted: 8 June 2016 / Published: 7 July 2016

A facile solvothermal method without calcination was successfully developed to prepare NiCo<sub>2</sub>O<sub>4</sub>/CNTs nanocomposites. XRD and TEM images revealed the NiCo<sub>2</sub>O<sub>4</sub> nanoparticles were tightly bonded on high conductive CNTs surface. The electrochemical properties indicated that the specific capacitance of NiCo<sub>2</sub>O<sub>4</sub>/CNTs was increased 15.4% at 1 A g<sup>-1</sup>. And 97.1% capacitance of NiCo<sub>2</sub>O<sub>4</sub>/CNTs retained after 3000cycles, which was obviously much higher than that of pure NiCo<sub>2</sub>O<sub>4</sub> with 81.1% retention.

Keywords: NiCo<sub>2</sub>O<sub>4</sub>; Carbon nanotubes; nanocomposites; supercapacitors

# **1. INTRODUCTION**

Supercapacitors, as a prevailing energy storage device, have been attracting widespread attention due to their high charge-discharge rate and long cycle life [1]. Because of fast and reversible redox reactions, transition metal oxides, such as Fe<sub>3</sub>O<sub>4</sub> [2,3], Co<sub>3</sub>O<sub>4</sub> [4-6], NiO [7,8], MnO<sub>2</sub> [9], ZnO [10], SnO<sub>2</sub> [11] and V<sub>2</sub>O<sub>5</sub> [12] have been widely studied as electrodes for supercapacitors. Especially, binary metal oxides, such as NiMoO<sub>4</sub> [13,14], NiWO<sub>4</sub> [15], ZnCo<sub>2</sub>O<sub>4</sub> [16] and NiCo<sub>2</sub>O<sub>4</sub> [17-20] have been reported to deliver a higher performance than single component oxides due to their feasible oxidation state. Among them, NiCo<sub>2</sub>O<sub>4</sub> is one of the most promising transition metal oxides for pseudocapacitors owing to nickel occupies the octahedral sites and cobalt distributes over both octahedral and tetrahedral sites, in which the solid-state redox couples  $Co^{3+}/Co^{2+}$  and Ni<sup>3+</sup>/Ni<sup>2+</sup> are presented [21]. However, pure transition metal oxides always suffer from low conductivity, resulting in unsatisfactory performance [22]. So considerable research efforts about high conductivity carbon materials combined NiCo<sub>2</sub>O<sub>4</sub> have been devoted to synthesis and characterization, such as

NiCo<sub>2</sub>O<sub>4</sub>/CNTs [23], NiCo<sub>2</sub>O<sub>4</sub>/graphene [24], NiCo<sub>2</sub>O<sub>4</sub>/carbon cloth [25]. F. Cai et al. constructed CNT@NiCo<sub>2</sub>O<sub>4</sub> core–shell structural nanocable by chemical co-deposition route combined with postcalcination with the capacitance of 1038 F g<sup>-1</sup> at a current density of 0.5 A g<sup>-1</sup> [26]. M. Li et al. fabricated NiCo<sub>2</sub>O<sub>4</sub>/CNTs by a one-step chemical bath deposition and annealing method with the capacitance of 930 F g<sup>-1</sup> at 5 mV s<sup>-1</sup> [27]. T. H. Ko et al. prepared NiCo<sub>2</sub>O<sub>4</sub>/MWCNTs by a dry synthesis technique and it exhibited a maximum specific capacitance of 822 F g<sup>-1</sup> [28]. To the best of our knowledge, NiCo<sub>2</sub>O<sub>4</sub>/CNTs nanocomposites has not been synthesized via such a facile solvothermal method without calcination. In this paper, we report the facilely synthesis of NiCo<sub>2</sub>O<sub>4</sub>/CNTs nanocomposites by solvothermal method without calcination. Herein, supercapacitive properties of the synthesized NiCo<sub>2</sub>O<sub>4</sub>/CNTs are enhanced the as an electrode material for supercapacitors. The specific capacitance of NiCo<sub>2</sub>O<sub>4</sub>/CNTs is 938.8 F g<sup>-1</sup> at a current density of 1 A g<sup>-1</sup>, which is 15.4% increase compared to the pure NiCo<sub>2</sub>O<sub>4</sub>.

## 2. EXPERIMENTAL

CNTs used in this study were prepared by CVD method using  $C_2H_2$  as precursor and Fe/Al<sub>2</sub>O<sub>3</sub> as catalysts [29]. 1.5 mmol Ni(NO<sub>3</sub>)<sub>2</sub>·6H<sub>2</sub>O and 3 mmol Co(NO<sub>3</sub>)<sub>2</sub>·6H<sub>2</sub>O were dissolved in 20 ml ethylene diglycol at 80 °C (marked as solution A). 9mmol NaOH and 30mg CNTs were dissolved in 40 ml ethylene diglycol at 80 °C (marked as solution B). After complete dissolution, solution B was added dropwise into solution A. After vigorous stirring for 30 min, the mixed liquids were implanted into an autoclave. The pressure of autoclave was adjusted to 10 MPa with CO<sub>2</sub>. Then the autoclave was performed in an oil bath at 180 °C, 200 °C, 220 °C for 8 h. The NiCo<sub>2</sub>O<sub>4</sub>/CNTs were obtained after washing with distilled water and alcohol until the pH reached 7.

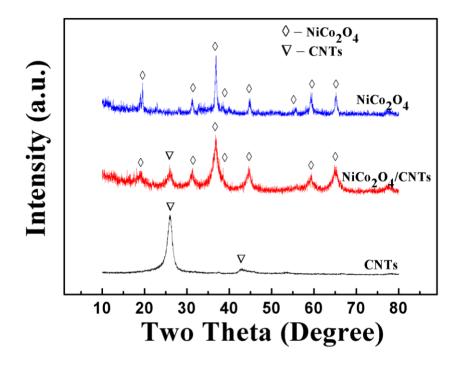
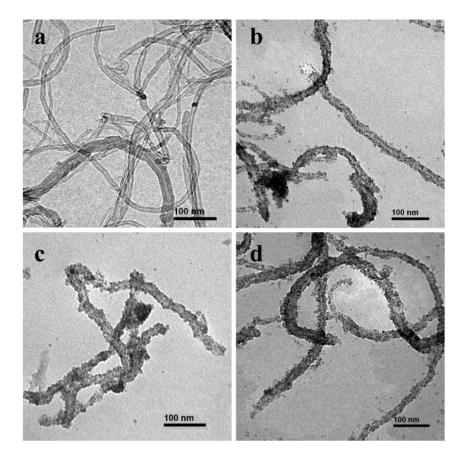
The phase structure and morphology of NiCo<sub>2</sub>O<sub>4</sub>/CNTs were characterized by XRD diffractometer (XRD, DX2700) and transmission electron microscope (TEM, JEM-2100). The electrochemical performances of NiCo<sub>2</sub>O<sub>4</sub>/CNTs-based electrodes were measured by a CHI 660E electrochemical workstation using a three-electrode mode in 6 M KOH solution. Platinum foil and Hg/HgO electrodes were used as counter and reference electrodes, respectively. The working electrodes were prepared by mixing each active material (80 wt%) with acetylene black (10 wt%) and polyvinylidene fluoride (PVDF, 10 wt%) in N-methyl-2-pyrrolidone (NMP) to form a slurry. The resultant slurry was pasted onto Ni foam substrate and dried at 120 °C for 4 h to remove the solvent. Then, the as-formed electrodes were pressed at 10 MPa. The specific capacitance was calculated according to:

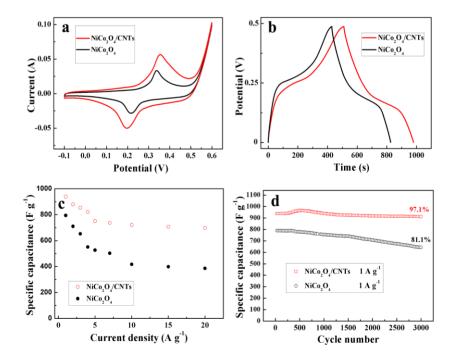
$$C = \frac{i_0 \Delta t}{m \Delta V} \tag{1}$$

Where  $i_0$ ,  $\Delta t$ , and  $\Delta V$  were the discharge current, discharge time, and difference of voltage in the time of  $\Delta t$  during discharge, respectively; m was the mass of NiCo<sub>2</sub>O<sub>4</sub>/CNTs in the electrode.

# **3. RESULTS AND DISCUSSION**

XRD patterns of the CNTs,  $NiCo_2O_4/CNTs$  and pure  $NiCo_2O_4$  (prepared without CNTs by the same procedures) were presented in Fig. 1.



Figure 1. X-ray diffraction of the CNTs, NiCo<sub>2</sub>O<sub>4</sub>/CNTs and pure NiCo<sub>2</sub>O<sub>4</sub>.

The intensity of all peaks was normalized according to the maximum peak. As shown in Fig. 1, nine diffraction peaks of pure NiCo<sub>2</sub>O<sub>4</sub> were observed at 20of 18.9°, 31.1°, 36.6°, 38.4°, 44.6°, 55.5°, 59.1°, 64.9° and 68.3°, with indices of (111), (220), (311), (322), (400), (422), (511), (440) and (531) (JCPDS card No. 20-0781), implying the formation of pure NiCo<sub>2</sub>O<sub>4</sub> structure obtained by solvothermal method without calcination. The NiCo<sub>2</sub>O<sub>4</sub>/CNTs sample contained two phases with NiCo<sub>2</sub>O<sub>4</sub> phase (JCPDS card No. 20-0781) and graphite phase (JCPDS card No. 26-1079), indicating that the CNTs were homogeneously surrounded by NiCo<sub>2</sub>O<sub>4</sub>.

The morphology and structure of NiCo<sub>2</sub>O<sub>4</sub>/CNTs nanocomposites were characterized by TEM. Fig. 2 showed the TEM images of the pure CNTs and NiCo<sub>2</sub>O<sub>4</sub>/CNTs (solvothermal temperature of 180 °C, 200 °C, 220 °C respectively). Compared with the TEM image of pure CNTs (Fig. 2a), it was evidently observed that NiCo<sub>2</sub>O<sub>4</sub> nanoparticles (about 10 nm) were effectively coated on CNTs surface. It can be seen from that Fig. 2b, Fig. 2c and Fig. 2d that with the increasing solvothermal temperature, the more NiCo<sub>2</sub>O<sub>4</sub> nanoparticles were coated on CNTs surface. According to the aforementioned microstructure and morphology characterizations of XRD and TEM, the NiCo<sub>2</sub>O<sub>4</sub>/CNTs nanocomposites were successfully prepared by a facile solvothermal method without calcination.



**Figure 2.** TEM images of (a) CNTs, (b) NiCo<sub>2</sub>O<sub>4</sub>/CNTs (180°C), (c) NiCo<sub>2</sub>O<sub>4</sub>/CNTs (200 °C), (d) NiCo<sub>2</sub>O<sub>4</sub>/CNTs (220 °C).



**Figure 3.** Electrochemical performance of NiCo<sub>2</sub>O<sub>4</sub>/CNTs and pure NiCo<sub>2</sub>O<sub>4</sub>: (a) CV curves. (b) Galvanostatic discharge curves. (c) The specific capacitance at different specific currents. (d) The cycling performances.

| Table 1. Comparison of the electrochemical | erformances of the as-prepared NiCo <sub>2</sub> O <sub>4</sub> /CNTs with the |
|--------------------------------------------|--------------------------------------------------------------------------------|
| other published results.                   |                                                                                |

| Materials                                      | Methods                                       | Specific<br>capacitance<br>(F g <sup>-1</sup> ) | Rate performance                | Capacity retention     | Reference |
|------------------------------------------------|-----------------------------------------------|-------------------------------------------------|---------------------------------|------------------------|-----------|
| NiCo <sub>2</sub> O <sub>4</sub><br>nanoplates | Hydrothermal and calcination                  | 294 (1 A g <sup>-1</sup> )                      | 48% (10 A g <sup>-1</sup> )     | 89.8% (2200<br>cycles) | 30        |
| NiCo <sub>2</sub> O <sub>4</sub><br>thin-film  | Electrochemically                             | 575 (1 A g <sup>-1</sup> )                      | 98% (10 A g <sup>-1</sup> )     | 99% (1000<br>cycles)   | 31        |
| NiCo <sub>2</sub> O <sub>4</sub><br>nanoflakes | Chemical bath deposition                      | 490 (15 A g <sup>-1</sup> )                     | No data                         | 97% (900<br>cycles)    | 32        |
| NiCo <sub>2</sub> O <sub>4</sub><br>nanorods   | Chemical bath deposition                      | 330 (15 A g <sup>-1</sup> )                     | No data                         | 96% (900<br>cycles)    | 32        |
| NiCo <sub>2</sub> O <sub>4</sub><br>hexagonal  | Hydrothermal and calcination                  | 663 (1 A g <sup>-1</sup> )                      | 88% (8 A g <sup>-1</sup> )      | 88.4% (5000<br>cycles) | 33        |
| NiCo <sub>2</sub> O <sub>4</sub>               | Sol-gel approach                              | 222 (1 A g <sup>-1</sup> )                      | 84% (3.5 A g <sup>-1</sup> )    | 96.3% (600<br>cycles)  | 34        |
| NiCo <sub>2</sub> O <sub>4</sub> -<br>RGO      | Self-assembly and thermal treatment           | 835 (1 A g <sup>-1</sup> )                      | 74% (16 A g <sup>-1</sup> )     | 108% (4000<br>cycles)  | 35        |
| NiCo <sub>2</sub> O <sub>4</sub><br>@RGO       | Hydrothermal                                  | 737 (1 A g <sup>-1</sup> )                      | 50% (10 A g <sup>-1</sup> )     | 94% (3000<br>cycles)   | 36        |
| CNT/<br>NiCo <sub>2</sub> O <sub>4</sub>       | Electrochemical deposition                    | 694 (1 A g <sup>-1</sup> )                      | 82% (20 A g <sup>-1</sup> )     | 91% (1500<br>cycles)   | 23        |
| CNT@<br>NiCo <sub>2</sub> O <sub>4</sub>       | Chemical co-<br>deposition                    | 1038 (0.5A g <sup>-</sup><br>1)                 | 64% (10 A g <sup>-1</sup> )     | 100% (1000<br>cycles)  | 26        |
| NiCo <sub>2</sub> O <sub>4</sub><br>/CNTs      | Chemical bath<br>deposition and<br>annealing  | 940 (5 mV s <sup>-1</sup> )                     | 75% (50 mV s <sup>-</sup><br>1) | 100% (10000<br>cycles) | 27        |
| NiCo <sub>2</sub> O <sub>4</sub><br>/MWCNT     | Dry synthesis technique                       | 822 (5 mV s <sup>-1</sup> )                     | No data                         | 88% (1000<br>cycles)   | 28        |
| NiCo <sub>2</sub> O <sub>4</sub><br>/CNTs      | Solvothermal<br>method without<br>calcination | 938.8 (1 A g <sup>-1</sup> )                    | 74.4%(20 A g <sup>-1</sup> )    | 97.1% (3000<br>cycles) | This work |

To compare the electrochemical performance of pure  $NiCo_2O_4$  and  $NiCo_2O_4/CNTs$  nanocomposites, the cyclic voltammetry (CV) and galvanostatic capacitive charge discharge (CD)

were tested using a three-electrode mode in a 6 M KOH solution. Fig. 3a showed the CV curves of NiCo<sub>2</sub>O<sub>4</sub> and NiCo<sub>2</sub>O<sub>4</sub>/CNTs. A pair of redox peaks could be found in each voltammogram, corresponding to the reversible reactions of  $Co^{3+}/Co^{2+}$  and  $Ni^{3+}/Ni^{2+}$ . The galvanostatic discharge curves of NiCo<sub>2</sub>O<sub>4</sub> and NiCo<sub>2</sub>O<sub>4</sub>/CNTs at 1 A  $g^{-1}$  were shown in Fig. 3b. The potential-time curve of NiCo<sub>2</sub>O<sub>4</sub>/CNTs was more symmetric, indicating not only pseudocapacitive and electrochemical double layer characteristic of NiCo<sub>2</sub>O<sub>4</sub>/CNTs electrode. As shown in Fig. 3c, the specific capacitances of NiCo<sub>2</sub>O<sub>4</sub>/CNTs were calculated to be 938.8, 880.0, 820.8, 720.6, 698.3 F  $g^{-1}$  at 1, 2, 4, 10, 20 A  $g^{-1}$ . respectively, which were obviously much higher than the specific capacitances of pure NiCo<sub>2</sub>O<sub>4</sub> (794.4, 710.3, 550.9, 476.8, 436.9 F g<sup>-1</sup> at 1, 2, 4, 10, 20 A g<sup>-1</sup>, respectively). The specific capacitance of NiCo<sub>2</sub>O<sub>4</sub>/CNTs was increased 15.4% than the pure NiCo<sub>2</sub>O<sub>4</sub> at 1 A  $g^{-1}$ . In addition, about 74.4% capacitance of NiCo<sub>2</sub>O<sub>4</sub>/CNTs and 54.9% of pure NiCo<sub>2</sub>O<sub>4</sub> were retained for a 20-time increase in the discharge current density. The cycling performances were also tested at a constant current density of 1 A  $g^{-1}$ , as shown in Fig. 3d. The specific capacitance of NiCo<sub>2</sub>O<sub>4</sub>/CNTs was 938.8 F  $g^{-1}$  at the first cycle and it gradually decreased to 911.3 after 3000 cycles, with a retention of 97.1%, whereas the specific capacitance of pure NiCo<sub>2</sub>O<sub>4</sub> decreased from 794.4 F  $g^{-1}$  to 644.0 F  $g^{-1}$ , with only 81.1% retention. Accordingly, the electrochemical performance of NiCo<sub>2</sub>O<sub>4</sub>/CNTs was enhanced compare to pure NiCo<sub>2</sub>O<sub>4</sub>. It could be owed to the NiCo<sub>2</sub>O<sub>4</sub> nanoparticles were tightly bonded on high conductive CNTs, which helped facilitate transportation of electrons of supercapacitors. As shown in Table 1, compared to previous reports, such tightly bonded NiCo<sub>2</sub>O<sub>4</sub>/CNTs electrode materials had much better electrochemical performance than other reported NiCo<sub>2</sub>O<sub>4</sub>-based electrode materials, including NiCo<sub>2</sub>O<sub>4</sub> nanoplates, film, nanoflakes, nanorods, hexagonal, NiCo<sub>2</sub>O<sub>4</sub>–RGO, NiCo<sub>2</sub>O<sub>4</sub>/CNTs and so on (the corresponding results are listed Table 1)[23, 26-28, 30-36].

## **4. CONCLUSION**

In summary, a facile solvothermal method without calcination was successfully developed to prepare NiCo<sub>2</sub>O<sub>4</sub>/CNTs nanocomposites. Due to the NiCo<sub>2</sub>O<sub>4</sub> nanoparticles were tightly bonded on high conductive CNTs surface, the specific capacitance of NiCo<sub>2</sub>O<sub>4</sub>/CNTs was 938.8 F g<sup>-1</sup> at 1 A g<sup>-1</sup>, increasing 15.4% compared to the pure NiCo<sub>2</sub>O<sub>4</sub>. And 97.1% capacitance of NiCo<sub>2</sub>O<sub>4</sub>/CNTs retained after 3000cycles, which was obviously much higher than that of pure NiCo<sub>2</sub>O<sub>4</sub> with 81.1% retention.

#### **ACKNOWLEDGMENTS**

The research was funded by the National Natural Science Foundation of China (No. 51202235, 51402276), Natural Science Foundation (No. LY15B010004) and Foundation of Science and Technology Department of Zhejiang Province (No. 2014C31125, 2016C31113).

## References

- 1. L. G. H. Staaf, P. Lundgren and P. Enoksson, Nano Energy., 9 (2014) 128.
- K. Xie, J. Li, Y. Lai, W. Lu, Z. Zhang, Y. Liu, L. Zhou and H. Huang, *Electrochem. Commun.*, 13 (2011) 657.

- 3. S. Liu, S. Sun and X. Z. You, Nanoscale., 6 (2014) 2037.
- 4. B. L. Ellis, P. Knauth and T. Djenizian, Adv. Mater., 26 (2014) 3368.
- 5. S. K. Chang, Z. Zainal, K. B. Tan, et al. N. A. Yusof, W. M. D. W. Yusoff and S. R. S. Prabaharan, *Ceram. Int.*, 41 (2015) 1.
- 6. Z. Y. Li, P. T. M. Bui, D. H. Kwak, M. S. Akhtar and O. B. Yang, Ceram. Int., 42 (2016) 1879.
- 7. L. Feng, Y. Zhu, H. Ding and C. Ni, J. Power. Sources., 267 (2014) 430.
- 8. H. Xiao, F. Qu and X. Wu, Appl. Surf. Sci., 360 (2016) 8.
- J. Cao, X. Li, Y. Wang, F. C. Walsh, J. H. Ouyang, D. Jia and Y. Zhou, J. Power. Sources., 293 (2015) 657.
- 10. R. S. Devan, R. A. Patil, J. H. Lin and Y. R. Ma, Adv. Funct. Mater., 22 (2012) 3326.
- 11. Q. Zhao, L. Ma, Q. Zhang, C. Wang and X. Xu, J. Nanomater., (2015) 850147.
- 12. J. Mu, J. Wang, J. Hao, P. Cao, S. Zhao, W. Zeng, B. Miao and S. Xu, *Ceram. Int.*, 41 (2015) 12626.
- 13. D. Guo, Y. Luo, X. Yu, Q. Li, and T. Wang, Nano Energy., 8 (2014) 174.
- 14. L. Lin, T. Liu, J. Liu, R. Sun, J. Hao, K. Ji and Z. Wang, Appl. Surf. Sci., 360 (2016) 234.
- 15. G. He, J. Li, W. Li, B. Li, N. Noor, K. Xu, J. Hu and I. P. Parkin, *J. Mater. Chem. A.*, 3 (2015) 14272.
- 16. T. Huang, C. Zhao, R. Zheng, Y. Zhang, Z. Hu, Ionics., 21 (2015) 3109.
- 17. C. An, Y. Wang, Y. Huang, Y. Xu, C. Xu, L, Jiao and H. Yuan, Crystengcomm., 16 (2014) 385.
- 18. J.Pu, J. Wang, X. Jin, F. Cui, E. Sheng and Z. Wang, *Electrochim. Acta.*, 106 (2013) 226.
- 19. D.Chen, Q. Wang, R. Wang and G. Shen, J. Mater. Chem. A., 3 (2015) 10158.
- 20. K. Deng and L. Li., Funct. Mater. Lett., 08 (2015) 1530002.
- 21. B. Cui, H. Lin, J. B. Li and J. Tao, Adv. Funct. Mater., 18 (2008) 1440.
- 22. Y. Wei, S. Chen, D. Su, B. Sun, J. Zhu and G. Wang, J. Mater. Chem. A., 2 (2014) 8103.
- 23. W. Liu, C. Lu, K. Liang and B. K. Tay, J. Mater. Chem. A., 2 (2014) 5100.
- 24. M. Srivastava, M. E. Uddin, J. Singh, N. H. Kim and J. H. Lee, J. Alloy. Compd., 590 (2014) 266-276
- 25. S. Chen, J. Wu, R. Zhou, Y. Chen, Y. Sonq and L. Wanq, Rsc. Adv., 5 (2015) 104433.
- 26. F. Cai, Y. Kang, H. Chen and Q. Li, J. Mater. Chem. A., 2 (2014) 11509.
- 27. M. Li, J.P. Cheng, F. Liu and X. B. Zhang, *Electrochim. Acta.*, 178 (2015) 439.
- 28. T. H. Ko, S. Radhakrishnan, W. K. Choi, M. K. Seo and B. S. Kim, Mater. Lett., 166 (2016) 105.
- 29. X. Q. Wang, L. Li, N. J. Chu, Y. P. Liu, H. X. Jin and H. L. Ge, Mater. Res. Bull., 44 (2009) 422.
- 30. J. Pu, J. Wang, X. Q. Jin, F. Cui, E. H. Sheng and Z. H. Wang, *Electrochim. Acta.*, 106 (2013) 226.
- 31. V. Gupta, S. Gupta and N. Miura, J. Power. Sources., 195 (2010) 3757.
- 32. R. R. Salunkhe, K. Jang, H. Yu, S. Yu, T. Ganesh, S.-H. Han and H. Ahn, *J. Alloys. Compd.*, 509 (2011) 6677.
- 33. J. Pu, X. Q. Jin, J. Wang, F. L. Cui, S. B. Chu, E. H. Sheng and Z. H. Wang, *J. Electroanal. Chem.*, 707 (2013) 66.
- 34. Y. Q. Wu, X. Y. Chen, P. T. Ji and Q. Q. Zhou, *Electrochim. Acta.*, 56 (2011) 7517.
- 35. H.-W. Wang, Z.-A. Hu, Y.-Q. Chang, Y.-L. Chen, H.-Y. Wu, Z.-Y. Zhang and Y.-Y. Yang, *J. Mater. Chem.*, 21 (2011) 10504.
- 36. G. Y. He, L. Wang, H. Q. Chen, X. Q. Sun and X. Wang, Mater. Lett., 98 (2013) 164.

© 2016 The Authors. Published by ESG (<u>www.electrochemsci.org</u>). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).