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Pseudomonas aeruginosa (P. aeruginosa) is considered one of the most important microorganisms that 

show a strong trend to growth on the metal surface and promote the biofilm formation. The present 

study describes the effect of P. aeruginosa (ATCC9027) on the corrosion resistance of electroless 

nickel-zinc-phosphorous (Ni-Zn-P) alloy coating based on carbon steel C1018. The influence of 

aerobic bacteria P. aeruginosa on the corrosion behavior of C1018 and Ni-Zn-P alloy in artificial sea 

water was studied by dielectric spectroscopy. Scanning electron microscope, SEM, and energy 

dispersive X-ray surface analysis techniques were used to distinguish the morphology and chemical 

composition of the alloy coating surface before and after 28 days of immersion in a nutrient medium. 

Although, the presence of P. aeruginosa in sterile media reduce the value of the corrosion resistance of 

C1018 to 691Ω , but it rises the corrosion resistance of Ni-Zn-P alloy up to 28KΩ. Quantitative 

description of the power of the morphology of alloy coating on bacterial affection and biofilm 

construction was investigated by the plate-counting method. The free biofilm fraction electrode surface 

(1-Ɵ) was calculated for C1018 and Ni-Zn-P to be equal 4.016 and 0.3616, respectively. These results 

revealed that the antibacterial performance of the zinc alloy coating is better than the uncoated C1018 

and it encourages the formation of passive biofilm protect carbon steel from biocorrosion.  

 

 

Keywords: Carbon steel, Pseudomonas aeruginosa, Biocorrosion, Biofilm, Ni-Zn-P alloy, EIS, 

SEM/EDX. 

 

 

1. INTRODUCTION 

Carbon steel  is an iron-carbon alloy and it has been principally used in the construction 

pipelines which are considered the most efficient and economic method of transporting hydrocarbon 
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products contained in petroleum products from one place to another on the surface of the earth. One of 

the most important problems which faces carbon steel pipelines is the aggressive character of 

environment for instance seawater by salt and microbial nature, so the study of protecting carbon steel 

pipeline surface with a thick hard protective coat is therefore quite significative [1-3]. 

Due to the presence of microorganisms in the seawater that has been recognized to attach 

themselves to surfaces of pipeline networks and colonize, proliferate and finally form biofilm [4].  

Biofilms are microbial populations from complex microbial structure collected of their metabolic 

products, cells and including extracellular polymeric substance (EPS). This composition creates 

changes in the electrochemical behavior at the surface of the metal and in the surrounding environment 

[5] and cause biocorrosion or microbiologically influenced corrosion (MIC) [6-8]. Different attack 

process at the metal-alloy interface will occur, such as the localized corrosion, general corrosion or 

corrosion inhibition due to the change in the electrochemical conditions that caused by microorganisms 

[9].   

Industrial current progress directs the research to form a new generation of antibacterial cover, 

protect pipelines from hazardous effects of the microorganism through to put a stop to their growth. 

For example, the production of antibacterial coating intended for the relevance of petrochemical 

industries to provide safety and economic solution for biocorrosion issue [10,11]. After attachment of 

viable bacteria on the metallic surfaces and interfaces, bacteria colonization and biofilms are formed 

that may causes both corrosive and inhibitory actions and complex biofilm /protective film interactions 

[9].  

Autocatalytic electroless Ni coatings is alternate simple method to produce a thin uniform 

layers have gotten attractiveness due to their excellent corrosion, wear and scratch resistance. The 

coating structure plays a vital role on its properties dependant on amount of P deposited. The coating 

property can be further enhanced by deposit in Ni-P matrix another one or more metallic elements as 

the same as Zn, Cu, Co, etc. [12].  The nickel ternary alloy coating is regarded as the most successful 

method to alter the physical and chemical properties of binary Ni–P alloy deposits [13–15]. The 

merging of Zn element into Ni–P matrix has great impact on the microstructure and mechanical 

properties of Ni-P coating [16]. Moreover, Ni–Zn–P coating has the best corrosion resistance in briny 

surrounding as electrochemical results indicated in the literature [16, 17]. 

Pseudomonas aeruginosa is the most abundant bacterial species present in industrial and 

seawaters and it is intimately involved in corrosion process and has been chosen the major colonist in 

the process of biofilm configuration. In addition P. aeruginosa is a harmful pathogen bacteria that can 

cause many respiratory diseases [18]. Pervious reports demonstrated that P. aeruginosa may release  

acids enhance the passivity breakdown and increase the corrosion rate of metals and alloy 
[19]

, or 

secrete EPS binding with the metal surface ions and may lead to shift the electrochemical behavior of 

the metal surface to noble direction [20]. Until now the mechanism governing the role of biofilm 

process remains unclear [21]. 

There are a few papers relate the electrochemical changes and antibacterial inhibition of ternary 

alloy Ni-Zn-P coating [22].  In the present study Zn was incorporated in to the nickel-phosphors to 

achieve novel biofilm / Ni-Zn-P ternary coating encourages the biocorrosion resistance of the carbon 

steel in seawater. The control of the aerobic bacteria P. aeruginosa on the decay behavior of Ni-Zn-P 
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alloy coating was explored by using EIS measurements. Furthermore, SEM/EDX analysis was used to 

record the changes in the morphology and chemical composition of coating surfaces under different 

situation.  

 

 

 

2. EXPERIMENTAL  

2.1. Materials and solutions 

Cylindrical - shaped commercial carbon steel coupons with 15mm thickness and 0.5cm hight 

from Armco (Part Number:CO1113770204120, C1018), Serial Number: 2524 were used. C1018 

carbon steel (CS) is composed of 0.26wt%C, 0.46wt%Mn, 0.27wt%Si, 0.035wt%S, 0.11wt%Cr, 

0.09wt%Ni, 0.01wt %P and 0.15wt %Cu with the remainder Fe. C1018 plate of 6 mm thickness was 

cut to 10 mm X 10 mm size coupons.  Before every experiment, the coupons were mechanically 

polished using increasing better quality grades of silicon carbide papers from 400 up to 1200 grit. After 

polishing the coupons were ultrasonically agitated for 15 min and clean by immersion to pure ethanol 

for 1h. 

 

2.2.  Bath of Electroless deposition 

The zinc ternary alloy coating was prepared from the sodium hypophosphite electrolyte bath by 

means of the chemical composition shown in Table1.  

 

Table 1. The Experimental conditions to prepare the alloy coating. 

 

Chemical composition wt (gram) in liter 

Nickel Sulphate(NiSO4.6H2O) 28 

Sodium hypophosphite(NaH2PO2) 20 

Sodium citrate(C6H8Na3.2H2O) 35 

Lactic Acid 5 

Ammonium Sulphate(NH4SO4) 30 

 Zinc Sulphate(ZnSO4.7H2O) 3 

Operating Condition 

pH 8.0 

Temperature 90±2 

Deposition rate (∆m/h) 8-10 

 

Throughout the deposition process, the bath pH was adjusted at 8 value by sodium hydroxide. 

Each and every one of solutions was prepared through analytical grade reagents from Sigma-Aldrich 

and distilled water. The experimental conditions are given also as mentioned inside Table1. 
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2.3. Surface Analysis Studies 

The surface morphology and chemical composition of C1018 and Ni-Zn-P alloy coating 

samples were examined and investigated by scanning electron microscope, SEM, with energy 

dispersive X-ray spectra, EDX, analysis by JEOL-840 electron prop micro analyzer [23].  

 

2.4. Electrochemical impedance spectroscopy measurements 

The corrosion resistance of the C1018 and Ni-Zn-P alloy coating was investigated in free 

artificial sea water (A) and in artificial sea water containing P. aeruginosa (B) solutions at room 

temperature. Dielectric spectroscopy which it’s known as electrochemical impedance spectroscopy, 

EIS, is a non-destructive responsive method which makes possible the detection of any transform 

occurring at the metal / solution interface. All EIS measurements were carried out using a potentiostat 

AUTOLAB (PGSTAT 30 with FRA modules, Ecochemie) in the same compartment three-electrode 

cell, which discussed previously.  All EIS spectra were obtained by applying the open circuit potential 

at a frequency range of 10
−1

–10
5
 Hz to evaluate the constancy of  C1018 and Ni-Zn-P alloy coating in 

two electrolyte solutions [23]. The impedance spectrum is displayed as a Bode diagram (impedance 

modulus and phase angle vs. frequency) and  Nyquist diagrams (Real impedance vs. imaginary 

impedance) [23]. From Bode & Nyquist plots, equivalent circuits that fit the experimental data were 

proposed. EIS outcomes were interpreted using a fitting procedure fit program ANOVA 1.8 for all the 

frequencies measured [23]. The standard used in estimating the quality of the fitting were evaluated 

with the minor chi-square value and the minor evaluation errors (in%) for all the machinery [23]. 

 

2.5. Microbial Study  

2.5.1. Inoculums agriculture 

The entire tests were carried out using a nutrient-rich simulated seawater-based medium. The 

medium consists of 23.476 g/l NaCl; 3.917 g/l Na2SO4; 0.192 g/l NaHCO3; 0.664 g/l KCl; 0.096 g/l 

KBr; 10.61 g/l MgCl2; 6H2O; 1.469 g/l CaCl2; 2H2O; 0.026 g/l H3BO3; 0.04 g/l SrCl2; 6H2O, 3 g/l 

bacteriological peptone and 1.5 g/l yeast take out from Oxoid, UK. The value of pH of the medium 

was adjusted to 7.2 ± 0.1 by NaOH solution, and untainted by autoclaving for 20 min at 121 
°
C at low 

pressure. The Pseudomonas aeruginosa ATCC 9027 (P. aeruginosa) strain was supplied by 

INCQS/FIOCRUZ, RJ, and Brazil.  A new culture was refreshing from ice-up-dried ampoule, and 

associate cultured two time in 5 ml of nutrient broth media before use [23]. The bacterium was 

cultivated for 3 days in a 125 ml Erlenmeyer flask containing 20 ml of the new culture medium on a 

rotary shaker (15 
°
C, 175 RPM) after the recovery. A total of 20 ml of the cultured bacteria stored in a 

_
20 

°
C refrigerator is considered a substance used for inoculation in all the experiments to make sure 

the pure P. aeruginosa bacteria. 
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2.5.2. Electrochemical and surface study after cultivation of P.aeruginosa  

Into 100 ml of the nutrient rich medium was fertilized by one ml of  P.aeruginosa culture for 3 

days in conical flasks. The flasks were covered with closure to prevent pollution. After sterilization, 

the prepared specimens were introduced into the inoculated medium. The flasks containing the metal 

specimens were kept in an incubator at 25 °C. To keep up the bacterial density at the steady-state 

growth phase throughout the study period, a renew mode of P.aeruginosa culture growth was 

employed, that is to say 75% medium was exhausted and put back with an equal amount of a fresh 

sterile medium each 7 days. C1018 and Ni-Zn-P alloy coating samples were get back from the 

inoculated medium after four weeks of immersion to study the electrochemical behavior and for 

surface analysis. 

 

2.5.3. Follow up Bacterial Attachement  

The full amount of bacterial attachment was looked into by the plate-counting method [23]. 

The rate of bacteria attachment in the simulated repository environment was confirmed by counting up 

analysis of the media after 1, 3, 7, 14, 21 and 28 days of immersion. For all experimental conditions 

two samples were used for CFUs evaluation. The samples were taken away from the medium, softly 

washed to remove stick on bacterial cells on the samples were diffused into15 ml sterile phosphate 

buffer (0.0425 g KH2PO4 and 0.190 g MgCl2 per liter) by forceful vortex mixing for 5 min. Successive 

dilution of the bacterial cell suspensions was prepared and 0.1 ml of each concentration was plated 

onto nutrient agar to hold up the development of bacteria. The plates were incubated for 24h and the 

numbers of colonies are calculated. Suggested practical cells on each specimen were calculated and 

expressed as colony forming units per square centimeter (CFU cm
-2

). 

 

2.5.4. Biofim study  

In our study the formation of biofilm was detected on uncoated C1018 and Ni-Zn-P alloy 

coating by SEM after the specimens recapture from the inoculated medium after 28 days of exposure. 

Furthermore, to appreciate the grade of deterioration under the biofilm, the specimens were immersed 

in a beaker with 100 ml of a 0.1 M EDTA solution [24, 25], and then ultrasonicated for 15 min in a 

Cole–Parme, USA bath with a frequency of 40–50 kHz to eliminate the corrosion products and the 

biofilm [25]. The samples were coated with gold by supptring method and examine with SEM. The 

location for SEM imaging were randomly chosen on the C1018 and Ni-Zn-P alloy coating surface to 

be representative of their total surfaces. 

 

 

3. RESULTS AND DISCUSSION  

The carbon steel C1018 and Ni-Zn-P alloy coating morphology with different magnification is 

presented inset in Fig.1. The mechanically polished C1018 appears homogenous and smooth with non-
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porous surface structure, Fig.1 (A). The results of the EDX analysis of the surface of  C1018 confirm 

that the key elements present is Mn and Fe. 

 

 
 

 

 

 
 

Figure 1. Surface Morphology and Chemical Composition of Carbon steel (A) and Ni-Zn-P alloy 

coating   (B). 

 

The electroless plating process deposit successfully Ni-Zn-P coat on C1018 with respect to zinc 

sulfate in the plating solution. The SE micrograph of deposit Ni-Zn-P, Fig. 1 (B), show nano-

crystalline structure with larger cauliflower-like  nodules with increasing nodule roughness [26]. The 
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chemical composition of surface film confirmed by EDX analysis for Ni-Zn-P alloy coating and 

presented also in Fig. 1 (B), which support the deposition of Zn. 

 

 
 

Figure 2. Surface Morphology Carbon steel C1018 (A) and Ni-Zn-P alloy coating (B) after 28 days of 

immersion in artificial seawater. 

 

 
 

Figure 3. Surface Morphology of Carbon steel C1018 (A) and Ni-Zn-P alloy coating (B) after 28 days 

of immersion in renewing culture of Pseudomonas aeruginosa. 
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The high nickel content (78 wt.%) is confirmed the successful deposition of a good passive 

coat by the electroless method more than 15-20 wt.% nickel content formed by the conventional 

plating method [27]. The present analysis results confirm the fact that the electroless process can be 

used to produce a passive coat with lower zinc content that can replace Cd in sacrificial protecting 

underground petrochemical pipelines [27]. Also, the low iron 2.400 wt.%  in Ni-Zn-P alloying coat 

referred to the good coating layer from Zn, Ni, and P species that formed via the present bath 

conditions. 

The surface morphology of C1018 and Ni-Zn-P alloy coating after immersion in sterile 

medium for 28 days is presented in Fig.2. From this figure we can note that complete corrosion failure 

of the surface is recorded for carbon steel C1018 without coating in sterile medium, while the passive 

Ni-Zn-P alloy coating can resist the damage and successfuly protect the surface of carbon steel from 

corrosion. This result reflects the ability of electroless Ni-Zn-P in corrosive environment. 

 

 

 
 

Figure 4. Surface Morphology of Carbon steel C1018 (A) and Ni-Zn-P alloy coating (B) after removal 

of biofilms. 

 

After 28 days incubation with P. aeruginosa renewing culture, major change was observed on 

both the morphology of C1018 and Ni-Zn-P alloy coating. Fig.3 shows that both two surfaces covered 

with biofilm, where the bacterial cells preferentially attached themselves to form patchy or blotchy 

biofilm on C1018 surface and to form an intact uniform biofilm layer on Ni-Zn-P alloy coating. The 

acidity of medium did not change throughout the experiment, this indicated that P. aeruginosa not 
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release acids [19]. The extensive biofilm formed on Ni-Zn-P alloy coating, we infer that the compact 

biofilm layer may provide extra protection to this alloy coating in seawater. 

To make sure the effectivness of biofilm on the surface of C1018 and Ni-Zn-P alloy coating , 

the biofilm on both surfaces was removed according to the procedure that described in the 

experimental section and both surfaces was analysied by SEM.  

Fig. 4 shows that micro-pits were observed on the surface of C1018, Fig. 4 (A), while there are 

no absolute micro-pits on Ni-Zn-P alloy coating was observed after removing the biofilm layer, Fig.4 

(B). Further very nice observation detected from Fig.4 (B) is that the cauliflower-like nodules Ni-Zn-P 

alloy coating was still intact after removing the biofilm. This result supports the result deduced from 

Fig.3, which illustrate that the thick biofilm layer formed on Ni-Zn-P alloy coat act as a protective 

anticorrosive auxiliaery coat [28]. The present results agreement with another further results that 

pointed to the existence of extra-cellular polymers (EPS) which extracted from the cells of bacteria and 

formed on the alloy surface. EPS retarded the corrosion process or impaired the protective nature of 

the alloy through the formation of passive layer from died cells [28]. The most predictable mechanisms 

by which bacteria cause an inhibition of corrosion are recognized to a decrease in the damage action of 

the medium at the metal-bulk solution interface throughout decreasing the acidity of the medium, or 

due to the formation of strong protective biofilms on the metal surface by the production of EPS with 

metal abilities and finally or due to decrease the cathodic reaction that results from the utilization of a 

cathodic electron acceptor by microbes [29, 30].  The thick biofilm layer composed of extracellular 

polymeric substance formed on Ni-Zn-P act as a defending layer, which falling the contact of the alloy 

surface to the exterior environment. Among the two types of the present samples, Ni-Zn-P alloying 

coat showed higher resistance due to the uniform compact of biofilm formation than the uncoated 

C1018 ones.  

 
Figure 5. Pseudomonas aeruginosa colonies on broth-agar plates. 
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In the present work, the P. aeruginosa culture colonies evaluation after 28 days of coupons 

exposure was studied.  The carbon steel coupons showed the lowest number of attached bacteria while 

Ni-Zn-P alloy coating showed a significant high number of bacteria that enhance the formation of a 

thick biofilm layer on it.  Fig. 5 shows the CFU/ml values of C1018 sample which was significantly 

lower than Ni-Zn-P alloy coating sample.  

This result may be concluded that the by-products of  P. aeruginosa are not corrosive, this 

feature helps it to form a protective biofilm [28]. This result match with another author’s, Garcia et al., 

showed that the bacteria secluded form copper electrode surfaces disallowed corrosion due to biofilm 

formation which acted as a protective anticorrosive coating [28]. He was postulated that the 

exopolyssachrides created by the bacterial strains decreased the corrosive action to the least at the 

same time as it prohibited the interaction of the metal surface with the external environment. 

Furthermore, the protecting action of the biofilm of P. fragi, E. coli and B. brevis with Actinomycetes 

have formerly been shown [28]. The attendance of B. subtillis biofilms formed a defensive layer,  

allowing Al 2024 to be inert in artificial seawater [31]. Commonly, biofilm is considered as a 

coagulate collected 95% from water with EPS, which adjust the material goods at the interface 

between the metal or alloy surface and bulkiness of the solution. A achievable clarification of the 

better resistance of Ni-Zn-P alloy coating in medium containing a P-aeruginosa is outstanding to the 

treatment area of alloy sample by biofilm which it will be calculated from the following EIS 

measurements.       

The electrochemical impedance is a strong procedure for the description of electrochemical 

response at the surface / biofilm boundary and proof the role of biofilm in controlling biocorrosion. 

Impedance spectra of C1018 and Ni-Zn-P coating deep in sterile medium and medium containing P. 

aeruginosa for 28 days have been given in Figs. 6 & 7 as Bode phase inserted with Bode impedance 

and as Nyquist plots in Fig. 8. Otherwise, electrochemical impedance information were understood via 

an appropriate procedure fit program ANOVA 1.8 and based on equivalent circuit models as shown in 

Fig. 9. Equivalent circuit (1) is a single layer and the model (2) is a double layer, where both models 

can be suitably used for fitting all the impedance results. 

The Bode phase plot with inserted bode impedance spectra of C1018 and Ni-Zn-P coating 

either in disinfected medium and medium containing P. aeruginosa are presented in Fig.6 and Fig.7, 

respectively. One clear phase maximium of C1018 in sterile medium at low frequency was observed 

while in medium containing P. aeruginos two phases are observed, one at low frequency and an 

indication of another small phase maxima at higher frequency, as shown in Fig.6a, which confirm the 

formation of biofilm layer on C1018 in medium containing P. aeruginosa. The insert bode impedance 

result, Fig.6b, recorded that the impedance values of C1018 in a medium containing P. aeruginosa is 

lowered than that in sterile medium, which reflect the corrosive effect of P. aeruginosa due to the 

absence of thick uniform biofilm layer. This result supports our pervious biofilm studies as shown in 

Figs.3-5. 
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Figure 6.  Bode impedance diagrams  of C1018  immersed in sterile medium and medium containing 

P.aeruginosa; (a) Bode phase and inset (b) Impedance phase. 

 

The impedance data of the Ni-Zn-P coat on C1018 in a sterile medium and in a medium 

containing P.aeruginosa show in Fig.7.  The bode phase result, Fig.7a, recorded that the phase angle 

has two maxima in a sterile medium, this result means that the Ni-Zn-P/electrolyte border is controlled 

by two time constants. In medium containing P. aeruginosa, the impedance spectra show the splitting 

in the frequency vs phase angle degree diagram, these observations clarify that the inner and outer 

layer are contributing to the film growth kinetics [32,33]. So, the phase angle diagram has one broad 

maxima at high frequency. The insert bode impedance result, Fig.7b, recorded that the impedance 

values of Ni-Zn-P alloy coating in a medium containing P. aeruginosa is higher than that in sterile 

medium owing to the formation of a thick ordinary biofilm layer as we have seen in Fig.3 (B). 
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Figure 7.  Bode impedance diagrams of Ni-Zn-P/C1018  immersed in sterile medium and medium 

containing P. aeruginosa;  (a) Bode phase and inset (b) Impedance phase. 

 

Nyquist plots of C1018 and Ni-Zn-P alloy coating immersed in sterile medium and medium 

containing P. aeruginosa have been designed in Fig.8. Where the corrosion resistance at the minimum 

frequency range reveals to the corrosion resistance. This figure indicates that the coat in medium 

containing P. aeruginosa has maximum corrosion resistance, while the lowest value is recorded for the 

uncoated C1018. The spectra confirmed the two time constants of coat in sterile medium containing P. 

aeruginosa. At a higher and an intermediate frequency region the impedance diagrams reflect the outer 

layer , while the low frequency region characterize the inner layer [34-36]. Fig.8 supports the same 

observations from Figs 6 & 7, wherever the well-known semi-ciricle in this Nyquist plot, whose 

diameter value improved by Ni-Zn-P alloy coating and up to the highest value for in medium 
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containing P. aeruginosa appropriate to the formation of anticorrosive biofilm thick film lying on its 

surface.  
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Figure 8.  Nyquist impedance diagram of C1018 and Ni-Zn-P/C1018 immersed in sterile and medium 

containing P. aeruginosa. 

 

 
Figure 9. Theoretical equivalent circuits used for fitting the impedance spectra based on (1) a single 

and (2) a in two – layer model of surface film. 
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On the other hand, the spectra of C1018 for the exposure with or without bacteria can be well 

fitted to the circuit (1) presented in Figure 9. This result indicated that the corrosion product and non-

homogenous biofilm layer is formed on C1018 in sterile media and medium containing P.aeruginosa, 

respectively. The calculated impedance parameters of C1018 in both media are summarized in Table 2. 

These values show clearly that the corrosion resistance of C1018 in sterile medium (3.16kΩ) is more 

than that of C1018 in medium containing P. aeruginosa (691Ω), where these values are equivalent 

with the inserted impedance spectra, Fig.6b. 

 

Table 2. Values of electrochemical impedance of C1018 and Ni-Zn-P/C1018 in the sterile medium and 

medium containing P. aeruginosa. 

 

Sample  Circuit (1) Circuit (2) 

Rsoln Rct QCPE Rsoln R1 Q1 R2 Q2 

C1018  

medium 

13.6ῼ 3.19kῼ 717μF ------ ------ ------ ------ ------ 

C1018 

P.aeruginosa 

16.7ῼ 691ῼ 297μF ------ ------ ------ ------ ------ 

Ni-Zn-P 

medium  

------ ------- ------ 29.5ῼ 1.94kῼ 1.5μF 8.31kῼ 28.6μF 

Ni-Zn-P  

P.aeruginosa 

------- ------- ------ 23.5ῼ 3.44kῼ 1μF 25.34kῼ 20.5μF 

 

The constant phase element present in the circuit (Q) is a pseudo-capacitive element which 

typically are related to rough surfaces [23], where  

C = Q (wm) 
n-1 

                                                     {1} 

wm is the frequency at which the imaginary part of the impedance Z” has a maximum. About the values 

of (QCPE) for uncoated C1018 it is observed that , the value of passive film capacitance in sterile 

medium has a higher value (717µF) than that in medium containing P. aeruginosa (297 µF). The 

increase of QCPE is dependable with a decrease in the thickness, where the inverse capacitance of the 

passive layer, 1/ QCPE, is straight compared to the thickness of this layer. The increase of QCPE is 

compatible by a decrease in the thickness of the passive layer. This important result revealed to while 

P. aeruginosa causes an increase in the thickness of biofilm layer formed on C1018 in medium 

containing bacteria, but the formed layer  biofilm is not uniformly cover the surface of C1018, so it is 

not significantly increase its resistance in medium containing bacteria [19].  

The impedance data of Ni-Zn-P coating in sterile medium or in medium containing 

P.aeruginosa were approved to hypothetical data according to the equivalent circuit model (2) 

presented in Fig. 9. In this circuit, two parallel combination terms are used, the first (Outer layer) is the 

charge transfer resistance, R1, and the double layer capacitance, Q1, and the second (Inner layer) is the 

barrier film resistance, R2, and the barrier film capacitance, Q2, both in series to the solution resistance 

Rs.  

A good quality harmony between the experimental data and the proposed circuit model is 

present, which lay emphasis on the duplex nature of the passive film formed on Ni-Zn-P. The 
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corrosion resistance of the duplex film is represented by the sum of the inner and outer layer 

resistances and also the solution resistance. The resistance of Ni-Zn-P in sterile medium (1.94 & 

8.31kΩ for inner and outer layer, respectively) is lower than that the resistance of Ni-Zn-P in medium 

containing P. aeruginosa (3.44 & 25.34kΩ for inner and outer layer, respectively). This difference in 

the value of resistance be sure pointed to the thick uniform biofilm formed on Ni-Zn-P in medium 

containing P. aeruginosa. This revealed a positive influence of bacteria on zinc coating Ni--P alloy, 

which can improve the surface of C1018 in media containing bacteria [22]. This result also attributed 

to the present electroless method provide us alloy ternary coating with low zinc content (14.13 w%) 

and high nickel content (78.89 w%), this alloy is hard and has barrier resistance. Owing to the high 

resistance of Ni-Zn-P alloy coating, it’s not dissolve rapidly in any corrosive environment [37]. 

Additionally, the presence of ammonia complexing agent in electroless bath  and adjust the pH of the 

bath at 8, both two factors help the deposition of  Ni, Zn and P with a suitable weight percent as 

indicated in Fig.2 [37]. On the other hand, the EPS by-products of P. aeruginosa, which contain 

functional group, including amino acids are able to bind with the dissolved low zinc ions to form a 

novel uniform biofilm / Ni-Zn-P protective layer [38].     

It is documented that the surface area enclosed with the biofilm is electrochemically inactive 

and all the current is passed via the electrode surface itself. The fraction of the surface covered with the 

biofilm passive layer represented by the symbole Ɵ , and (1- Ɵ) is the total fraction surface uncovered 

with the biofilm is given by substituted in Equation {2};  

 

1- Ɵ = 
   

  
                     {2}, where Rt (Rt = Rpr + Rb) is the charge transfer resistance of C1018 

or Ni-Zn-P alloy coating in a medium containing P.aeruginosa and Rto is the resistance of C1018 or 

Ni-Zn-P in sterile medium. The uncovered electrode surface by biofilm for C1018 and Ni-Zn-P alloy 

coating is 4.616 and 0.356, respectively.             

For further investigation, the percentage inhibition efficiency (ηi) of the biofilm, which reflect 

the good adhesion of microbial film on Ni-Zn-P alloy surface may be confirmed by its influence on the 

impedance results. The Rct values were gained from the diameter of the semicircle in the Nyquist plot, 

and percentage inhibition efficiency (ηi) values were calculated using the following equation [39]: 

 

  η   
                                        

                          
                             {3} 

Where Rct (C1018) and Rct (Ni-Zn-P alloy coating) are the uninhibited and inhibited charge transfer 

resistance, respectively. In the present study, we demonstrate the role of  P. aeruginosa to inhibit the 

corrosion of the alloy coating by comparing ηi of the Ni-Zn-P alloy which calculated after its 

immersion in sterile medium and medium containing P. aeruginosa  for 28 days. In sterile media, the 

Rct record for alloy coating, this result suggests that the surface inhomogeneity is increasing in this 

media due to biocorrosion. However, in medium containing P. aeruginosa, Ni-Zn-P displayed 

increased Rct values after exposure to P. aeruginosa. This result assign to bacteria species inhibit 

corrosion of the alloy coating. An inhibition efficiency value (ηi) of 68.87 % and 97.599% was 

obtained from the EIS measurements according to Eq {1} for Ni-Zn-P alloy in free medium and 

medium containing P. aeruginosa, in that order. 
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4. CONCLUSION 

In this work, Ni-Zn-P alloy coating was prepared via electroless method to prevent carbon steel 

from biocorrosion and concluded in the following points:  

1. The deposition of C1018 in NiZn electroless bath is beneficial to deposit alloy coat with high 

Ni content (79 wt. %) and low Zn content (14 wt. %). 

2- In artificial seawater, C1018 was exposed to complete corrosion failure unlike alloy coating. 

3- The Ni-Zn-P alloy coating showed the higher CFU/ml value than C1018 after 28 days of 

immersion in medium containing P. aeruginosa industrial bacteria, this refer to the configuration of a 

thick consistent biofilm layer on Ni-Zn-P alloy coating and proved by EIS results. 

4- The percentage inhibition efficiency (ηi) of alloy coating in a medium containing P. 

aeruginosa  is equal 97.599% compared to 68.87 % in sterile medium. 

Therefore biofilm / Ni 78.89 Zn 14.13 P4.26 is believed to be a bi-layer alloy coating shows much 

better biocorrosion control in seawater than a single layer alloy coating of Ni-Zn-P and it is consider a 

promising coat for underground pipelines.  
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