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Zinc, an essential element playing crucial roles in numerous physiological, but also pathological 

processes, is still one of the most studied elements. The main importance of this metal is especially 

based on the structural role of zinc ions in many proteins including the transcription factors, 

antioxidant enzymes, and metallothioneins. Due to the role of zinc in many crucial physiological 

processes, its homeostasis must be intensively controlled. The controlling mechanisms are based 

especially on the zinc transporters and low-molecular proteins metallothioneins (MT). Zinc deficiency 

has been related with different state of diseases. Here, we primarily aim our attention to zinc and 

nutrition reviewing the whole process from intake to determination of this metal. The function of zinc 

ions in proteins with particular emphasis to oxidative stress is discussed followed by intake 

mechanisms and the role of zinc ions in both physiological and pathological processes. Finally, we 

summarized the assays used for detection of zinc in complex biological matrices. 
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1. INTRODUCTION 

Recent advances in understanding the human genome have been made possible due to intensive 

multidisciplinary cooperation involving the life sciences and technology. Genomics has succeeded in 

producing complete genome DNA sequences of different living organisms, but we are still some way 

from understanding the difference between the normal and pathological functions of cells and 

organisms. Currently, attention is directed towards proteomics providing information about protein 

localization, structure and function, and most importantly, interactions with other proteins. Recent 

improvements in high-throughput sample separation and mass spectrometry have impacted positively 

on the proteomic characterization of proteins in biological systems [1,2]. Metalloproteins are one of 

the most diverse classes of proteins, with the intrinsic metal atoms providing a catalytic, regulatory and 

structural role crucial to protein functioning [3]. 

Transition metals such as copper, iron and zinc play important roles in life as micronutrients, 

taking into account that their deficiency could result in disease [4-9]. In 1963 Prasad et al. penetrated 

the world of zinc in clinical practice with ill patients revealing for the first time the connection of zinc 

concentration to certain abnormalities in people from Iran and Egypt with different characteristic 

symptoms as dwarfism (due to slow growth), hypogonadism and delayed sexual maturation that 

disappear with zinc supplementation [10,11]. Zn is an essential trace element in many situations, in 

maintaining intestinal cells, bone growth, immune functions, being the most abundant transition metal 

in cells, playing a vital role in the functionalities of more than 300 enzymes, and in the stabilization of 

DNA and in gene expression [12,13]. It is distributed throughout the body, as it is part of many 

metabolites found in different organs and fluids. Approximately 60% of Zn in the body is localized in 

skeletal muscles, 25% in bones, 8% in skin and hair, 5% in liver, while only a small fraction (less than 

0.1%) can be found in plasma [14]. In biological systems Zn is present exclusively in cationic form as 

Zn(II). Zinc ions are cofactors of more than 300 enzymes serving as electron acceptors or stabilizer of 

protein structure. In other proteins, Zn(II) is a component of specific domains, for example zinc fingers 

in transcription factors. At cellular level the concentration of free Zn(II) is strictly regulated, thus 

practically all Zn(II) is bound to either organic or inorganic ligands [15]. At the same time zinc ions 

circulate between the ligands resulting in changes in enzyme activities, protein-protein interactions and 

protein-nucleic acids interactions[16]. Except catalytic and structure functions of bound Zn(II), 

changes in free Zn(II) serve for intra- and intercellular signalization [17-19].  For this reason in this 

review Zn is used for all forms of Zn(II) present in human organism.  

The Zn is mainly obtained through diet. Foods with higher content of Zn are almost always of 

the animal origin: especially oysters, pork, beef, veal, lamb, dairy products and some types of seafood. 

However, there are many more foods that serve as a source of nutritionally obtained Zn: nuts, seeds, 

pulses, whole grains, and with less with some fruits and vegetables [20]. All of these foods contain Zn, 

but usually it is associated with various proteins and nucleic acids that affecting its bioavailability. The 

Zn originating from plant foods exhibits a lower bioavailability due to the presence of phytic acid 

insoluble complexes poorly absorbable form. 

Today, the state of zinc deficiency is prevalent worldwide [21] (the prevalence of Zn deficiency 

and childhood stunting is shown in Figs. 1A and 1B), but the problems caused by zinc deficiency in 
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societies are ignored. Because anomalies regarding zinc homeostasis generate a certain known 

symptoms, in many cases deficient patients are not detected. The aim of the review is to summarize the 

knowledge regarding chemical and functional aspects of zinc and biomarkers involved in human 

pathological and physiological statuses, and to discuss suitable methods for highly sensitive zinc 

determination in biological matrices. 

 
 

Figure 1. (A) Estimated country-specific prevalence of inadequate zinc intake, using the 2003-2007 

time frame. (B) National risk of zinc deficiency based on the prevalence of childhood stunting 

and the estimated prevalence of inadequate zinc intake. Modified and adapted with permission 

from [21]. 

 

 

 

2. ZINC STATUS ASSESSMENT 

In several chronic diseases, like atherosclerosis, ageing, age-related degenerative diseases, 

neurological alterations, specific malignancies, autoimmune diseases and Wilson's disease, zinc 

deficiency can complicate the clinical features, influence negatively immunological situation, decrease 
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antioxidant status, and imply generation of inflammatory cytokines. In these diseases, oxidative stress 

and chronic inflammation may play important etiologic functions [22]. 

Zn has a very important role in many enzymatic reactions: proteosynthesis, wound healing 

[23], DNA synthesis [24], cell division and immunity [25]. In addition, Zn also helps normal growth 

and development during pregnancy, child’s growth and adolescence [26,27] and moreover it stimulates 

the senses of taste and hearing [28]. This pleiotropic activity requires detailed regulation, since it is 

necessary to introduce the Zn in the correct protein and at the right time. That is why we say that the 

bioavailability of Zn through diet and proper functioning of the entire protein system involved in their 

regulation is vital to maintain full health [29]. 

 

2.1. Associations with anthropometric parameters  

Anthropometric measurements are necessary for a complete nutritional assessment, and 

regarding zinc status, these parameters are highly related to Zn biomarkers, mainly in infant 

population. Zinc can mediate growth through its influence on the synthesis and secretion of growth 

hormones and activity of insulin-like growth factors [30]. Zinc is involved in DNA and RNA synthesis 

which moderate critical metabolic pathways involved in growth such as cell transcription and 

replication; synthesis of collagen, osteocalcin, somatomedin-c, insulin and alkaline phosphatase; and 

differentiation of chondrocytes, osteoblasts, and fibroblasts [31,32]. Thus, the mediating effect of zinc 

on appetite may lead to growth impairment.  

Zinc deficiency has been implicated in the pathogenesis of eating disorders, like anorexia 

nervosa [33]. In human populations, trials have shown that zinc therapy improved weight gain in 

anorexia [34-36]. Abbaspour et al. (2013) demonstrated a modest level of Zn deficiency (6-7%) in the 

mostly middle-class rural and suburban Iranian communities [37]. The relatively good zinc status in 

both populations was due to an adequate supply of dietary Zn from animal source foods, which 

provided almost half of the Zn intake and supplemented the bread and rice staples. The value of the 

Dietary Reference Intake (DRI) is established taking into account the balance of body Zn, by 

considering various aspects such as loss of endogenous Zn and bioavailability of Zn consumed.  

In 1973, the World Health Organization proposed for the first time an amount of Zn 

recommended based on related Zn homeostasis studies [20]. DRI values may vary depending on the 

type of population. In the case of Zn there are differences in terms of age, sex and physiological 

condition of an individual set. Recommended intake of adults varies Zn, 8 mg/day for women, 11 

mg/day for men [38]. Likewise, in growing children Zn nutritional requirements increase as it also 

increases their age. However, during gestation and lactation, the daily needs of women rise to 11-12 

mg/day and 12-13 mg/day, respectively. In infants fed with milk that is not of maternal origin, Zn 

requirements increase with respect to those who consume breast milk because the bioavailability of 

ingested Zn is lower [39]. In either case, babies need higher amounts of Zn from 6 months of age, 

which is when it begins to decrease the amount of Zn present in breast milk due to yet unknown 

physiological factors. 
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2.2. Valuation of intake 

Nowadays, we know that in the absorption process of Zn numerous transporters are involved. 

Most of Zn is absorbed in the small intestine by a saturable process that involves these transporters to 

ensure Zn homeostatic regulation at cellular level. Unlike what happens with other micronutrients such 

as iron, in the case of Zn absorption is directly dependent on consumption rather than their status [40]. 

When increasing the amount of Zn in the diet, the absorbed percentage decreases and vice versa. This 

capability allows for remaining regulated Zn absorption. Also, the gastrointestinal tract maintains Zn 

homeostasis adjusting endogenous losses to its absorption. Zn endogenous secretion has two 

components: an inevitable metabolic loss, and an extra loss which may contribute to Zn homeostasis 

increasing or decreasing its amount [41]. In fact, through various studies, Lee et al. (1993) and Sian et 

al. (1996) showed that when the amount of Zn consumed varies, the processes of absorption and 

secretion are adjusted until equilibrium [42,43]. 

However, when consumption is reduced below a threshold limit, the total amount of Zn 

absorbed may be insufficient. In these cases it is becoming apparent that problems may occur due to 

Zn deficiency in the body. This deficiency activates the release of Zn from tissue and clinical signs 

began to emerge. Although Zn is distributed throughout the body, not all tissues are mobilized with the 

same speed to help in keeping the Zn cell at homeostatic levels. Furthermore, the other part of the liver 

and bones are involved. Finally, skeletal muscles and other organs such as skin, thymus and heart are 

acting [44]. 

 

 

 

3. VALUATION OF BIOCHEMICAL PARAMETERS: ZINC BIOMARKERS 

Zn deficiency is a state which can result from a variety of situations: insufficient food intake 

Zn, its poor absorption [45], or excessively high body weight losses (a through sweat and epithelial 

desquamation further) [46]. In either case, the effects on the body can be varied. However, no visible 

clinical symptoms usually occur except in those cases in which the lack of Zn is particularly severe. 

Discovering of accurate novel zinc biomarkers in healthy subjects is challenging enough. Lowe et al. 

(2009) carried out a systematic review from 46 papers to assess the usefulness of biomarkers of zinc 

status in humans and to determine which biomarkers appropriately reflect variations in zinc status in 

response to depletion or supplementation [47]. This study confirms that in healthy individuals, plasma, 

urinary, and hair zinc are reliable biomarkers of zinc status.  

Regarding a human illness there are no biomarkers which are unaffected by the inflammatory 

responses associated with most infectious and non-communicable diseases, complicating the 

interpretation of zinc status biomarkers. Thirty-two potential methods of assessment of zinc status was 

reviewed in 2009 [47] and searching of new biomarkers for zinc status is still challenging, as shown in 

paper by Ryu et al. (2011), where combination of transcriptome, miRNA and cytokine analyses was 

applied to reveal potential new candidate protein and miRNA biomarkers of human dietary zinc 

depletion and homeostasis [48], or Grider et al. (2013) who analyzed whole plasma proteome in 

dependence on zinc depletion [49]. In addition to zinc concentration, levels and activities of zinc 
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proteins indicate to zinc status and can provide additional information about zinc availability in the 

organism [50]. These proteins are involved either in zinc storage such as albumin [51], metallothionein 

(MT) [52,53], zinc transport [54,55], regulation of transcription or immunity system [56]. Another 

group are zinc-dependent enzymes, such as serum alkaline phosphatase [51], lactic dehydrogenase, 

purine 5′-nucleotidase [57] or SOD [58]. Zinc status can also be assessed indirectly for example by 

determination of DNA integrity [59,60] or antioxidant status. 

 

3.1. Zinc in health 

Adequate zinc nutrition is necessary for normal growth, development, protection from 

infection, and pregnancy. The total body zinc can be divided into rapid and slow exchangeable pools. 

The slow pool represents 90 % of whole-body zinc and its components are skeletal muscles and bones. 

The rapid pool is composed of the most metabolically active zinc forms; it includes zinc from plasma 

and extracellular fluid and in liver, kidney, pancreatic and intestinal tissues [61,62]. Serum or plasma 

zinc concentrations, which are the most frequently used for assessing zinc status, vary with age and 

sex. For both males and females, serum zinc levels were lower in childhood, with maximum level 

during adolescence and decreasing slightly with age. From adolescence to adulthood, men had higher 

serum zinc concentrations with greatest differences for 20 - 40 year age group [63].   

The influence of genetic factors on individual’s serum zinc concentration is unknown. 104 

genes have been identified that responded positively to zinc supplementation and 86 genes, which 

responded negatively. These genes were involved in zinc transport, trafficking, and homeostating [64]. 

Because of homeostatic mechanisms, the serum zinc concentration is maintained within a narrow 

range, even when a broad range of zinc doses above and below theoretical requirements are consumed. 

Thus decreases of serum zinc level occur after severe or prolonged zinc depletion and increase rapidly 

after its repletion [65]. There is evidence for effective homeostatic mechanisms allowing human 

adaptation to low zinc intake and that zinc deficiency may occur even in circumstances of apparently 

adequate intake of this micronutrient. This can be explained by two factors: variation in the 

bioavailability of dietary zinc and the diminution in one or more metabolically important body pools of 

this micronutrient. Compatible with this possibility are the observed correlations between estimates of 

the quantity of zinc that exchanges with zinc in plasma within 2 days and both the dietary zinc intake 

and the quantity of zinc absorbed [66]. 

The population most affected by such deficiency mainly includes pregnant and lactating 

women, newborns whose only food is breast milk, children with poor food consumption of Zn, and the 

elderly. Despite this, if we move to places with lower economic and food resources, Third World 

countries, then the problems due to a lack of Zn are often standardized to the entire population [45]. 

This is due to a widespread malnutrition between almost all of the inhabitants of these countries. Zn 

deficiency in newborns is usually associated with transit occurs when the child begins to consume 

external food. Zn content in human milk undergoes changes with time so that, at the time of delivery 

generally has relatively high concentrations (> 3 mg/L) and these will abruptly decrease to very low 

concentrations (<1 mg/L) after 6 months. The mechanism by which this reduction of Zn occurs in 
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breast milk is not yet known occurs, however this physiological pattern is well documented and not 

dependent on the consumption of dietary Zn in the mother [67]. In fact, it is consistent with the age at 

which it is assumed that the baby should begin to consume foods and consequently acquire Zn by 

external sources. It is at this moment particularly important likelihood in children suffering from a 

deficiency of Zn, It is particularly important that children suffering from a deficiency of Zn, follow a 

proper diet, rich in foods with low Zn and phytic acid etc. [68]. 

Also, in elderly, where Zn deficiency may aggravate any condition or disorder from which they 

are suffering, while increasing the risk of degenerative diseases associated with ageing. In these cases, 

Zn deficiency is often associated with consuming less than the recommended daily intake Zn. Stewart-

Knox et al. (2005) stated that this poor consumption of Zn occurs in response to lower energy 

requirements with the elderly and sensory impairment [69]. But there are other theories: genetic 

alteration of some transporters is also considered because of the decreased absorption of Zn in the 

elderly [70]. In either case, the lack of Zn in the bodies of the elderly, is the cause of the availability of 

Zn ions to intracellular level [71] and as a result it is reduced and is responsible for the general 

situations of risk to the health of these people. 

 

3.1.1. Modulating factors in health 

Several factors have been described as potential modulators of micronutrients needs. In the 

case of zinc, it is known that physical activity improve the daily recommendations for this element, as 

its deficiency could trigger changes in the antioxidant, musculoskeletal, immune and inflammatory 

systems, resulting in declining in performance and fracture risk, among others. Physical activity 

carried out on a continuous basis and at certain intensity derives in an imbalanced nutritional status. As 

described previously, adequate zinc is needed for the integration of many physiologic systems such as 

immunity, reproduction, taste, wound healing, skeletal development, behaviour, and gastrointestinal 

function. This array of zinc dependent functions suggests that zinc status should regulate work 

performance [72]. 

Active subjects generally consume less zinc than recommended, 8 and 11 mg/d for women and 

men, respectively, with special emphasize in sport athletes who restrict food intake [73]. Attention to 

zinc status as a potential factor affecting physical performance, serum zinc has been shown to be 

essential. However, there is limited data available on the relationship between performance and zinc 

status, but physical activity seems to correlate positively with blood zinc level. The outcomes of the 

studies about changes in the concentrations of zinc in blood in physical effort situations have been 

determined by changes of zinc in serum and urine in response to aerobic endurance and muscular 

strength [74]. Acute and chronic effects of vigorous physical activity, on distribution of elements in 

young amateur boxers were related to the decrease on zinc serum levels [75]. Low circulating zinc 

concentrations in different tissues have been reported in competitive swimmers[76], and runners [77] 

and appear to be modulated by exercise. Several authors confirmed [78] the lower intensity and 

character of the physical exercise with the increased the body requirement for zinc. Dietary zinc may 
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have been inadequate in the athletes with the decreased circulating zinc. These findings provide the 

first evidence of impaired metabolic response during work when dietary zinc is suboptimal [73].  

Zinc generally maintains an activity with enzymes that neutralize free radicals effects resulting 

from the oxidation stress caused by exercise. It has been reported that dietary deficiency of zinc may 

be associated with decreased tissue levels of SOD, possible peroxidative cell damage, and increased 

ROS generation [79] and the increase hepatocytes sensitivity to the free radicals-induced damage [80]. 

Recently, Zhao and coworkers (2015) found that plasma zinc was positively correlated with Cu/Zn 

SOD [81]. This result suggested that zinc is an antioxidant agent and decreases ROS, required for 

Cu/Zn SOD activity in male basketball athletes. It is also assumed that MT plays an important 

regulatory role and the high affinity to hydroxyl and superoxidative radicals demonstrating that the 

exercise a weaker anti-oxidative defence and MT taking up the function of an antioxidant [78]. The 

maintenance of the redox balance may partly result from the integrative effect of augmentation of 

individual antioxidant in adaptation to chronic exercise. Such adaptive endogenous processes in 

athletes might be associated with their habitual intakes of antioxidant nutrients [80]. 

There is limited data to imply that zinc status may affect physical performance. Preliminary 

observations suggest that changes of zinc in serum and urine are related to the type of exercise 

performed, which are higher when there is a big impact on muscular tissues [74]. Because these 

muscle functions rely on recruitment of fast-twitch glycolytic muscle fibres, it may be hypothesized 

that zinc supplementation enhanced the activity of lactate dehydrogenase, a zinc-dependent enzyme. 

Interpretation of the significance of these findings is confounded by the high level of zinc 

supplementation, which suggests that any biological effect on performance was a pharmacologic 

response. Ability of the body to use the administered zinc and limited duration of the zinc 

supplementation raise other concerns [73]. Also of interest is that zinc status in athletes appear to be 

related to immune cell number and function in comparison with non-athletes both before and during 

the four weeks of intensified training in runners in spite of plasma zinc concentration and immune 

markers remaining constant during the study [77]. Requirements for zinc are generally higher in 

athletes than in normal population because of increased losses in sweat and urine. However, excesses 

of some minerals (particularly zinc) can impair immune function and increase susceptibility to 

infection [82].  

In summary, evidences that physical exercise suggest that exercise mobilizes zinc homeostasis 

related with the growing interest in micronutrient deficiencies, and athletes are at risk of zinc 

deficiency if they have an unbalanced diet. Further high-quality studies using these or new biomarkers 

are required for which there is limited data in physical exercise.  

 

3.2. Zinc in disease 

Today Zn homeostasis and especially its deficiency have been involved in numerous diseases 

from very different backgrounds. Neurodegenerative diseases such as Parkinson's or Alzheimer's 

disease (AD), liver failure, renal dysfunction, heart problems and different types of cancer are some of 

the diseases that have been linked to abnormalities in the homeostasis of Zn. Thus, this issue has 
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become in recent years the object of study of many researchers who want to know the mechanism by 

which these diseases develop. 

However, as mentioned above, the lack of this mineral in the body may be due to various 

factors such as the lack of absorption of Zn, either as a result of any condition which enhances the 

appearance of such shortcomings as due to genetic problems that prevent proper absorption of Zn 

intestine. There is evidence that in hospitalized patients there is a high prevalence of malnutrition, due 

to reduced food consumption or increased nutrient requirements are increased. WHO and UNICEF 

recommend 20 mg zinc supplements for 10-14 days [12,83]. Zinc recommendation depends on 

nutrition type; those that are almost the same as healthy people on those with enteral nutrition. In 

critically ill patients they usually have artificial nutrition enteral or parenteral. For parenteral nutrition 

zinc can be calculated using a factorial method and has been established as an average of 2.2 mg/day 

[84].  In a randomized study in critical patients it has been shown that if they receive high intravenous 

of zinc, selenium and copper over 8 days, compared with controls of a normal dose, in patients with a 

high dose, the infection and income time in ICU is low [85]. Another study in septic mice show zinc 

deficiency leads to an excessive activation of NF-κB [86]. In paediatric children it has been observed 

that low plasmatic zinc levels are associated with non-survivors of septic shock and many genes are 

under regulated [87].  

The extreme symptoms of zinc deficiency are characteristic for acrodermatitis enteropathica, 

as a consequence of mutation of the SLC39A4 gene, which affects the synthesis of ZIP4 zinc 

transported resulting in intestinal malabsorption of zinc. The clinical picture of severe zinc deficiency 

includes growth and development retardation, skin lesions, diarrhoea, hair loss or even alopecia, 

decreased sense of taste and smell together with anorexia, increased susceptibility to infections, 

behavioural and cognitive disorders and impaired vision [88]. 

Zinc is important for the immune system, activating T cells, thus it generally has anti- 

inflammatory and antioxidant properties [89,90]. It has been described as a protective role in many 

diseases for example viral infections like the common cold [90] or a HIV infection. Zinc has an effect 

in patients who especially suffer from zinc deficiency [91]. It also has been shown that zinc has an 

effect in infections such as hepatitis C, decreasing any gastrointestinal disturbance, body weight loss, 

and mild anaemia. Also, zinc has protective effects in bacterial diseases, such as diarrhoea, leprosy, 

tuberculosis or ulcer caused by Helicobacter pylori [91]. In asthmatic patients zinc deficiency the 

symptoms of the disease are increased by 4 to 5 times; zinc plays an important role in diseases the 

airways. In a meta-analysis it was demonstrated that serum zinc has a beneficial influence in 

osteoporosis [92]. In alcoholic patients it has been documented that there is a zinc deficiency in liver 

and this can lead to cellular death [93]. It has been found in cirrhotic patients that zinc deficiency 

influences disease severity, infection and poor transplant survival [94]. Zhou and coworkers exposed 

administered murine experimental model with decreased liver concentrations of metallothionein, first 

to alcohol and then afterwards to zinc. It was shown that alcohol induces degenerative morphological 

changes and subsequent oxidative damage is increased. In mice where zinc was administered after 

alcohol, zinc damped the toxic effects of alcohol [95]. 

Scientific evidences have shown an important role of zinc and recently many researchers have 

studied the effect of zinc deficiency in different illnesses and how zinc supplement can improve certain 
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diseases. Hopefully we can find these magical properties of zinc and together with other nutrients we 

can maintain our health better. Among the diseases in which zinc is mainly involved, 

neurodegenerative pathologies as AD has been recognized as a health worldwide problem affecting 

elderly people and increasing continuously [96]. 

 

3.2.1. Zinc, neurodegeneration and aging 

The process of ageing has been explained on the basis of two different theories, namely 

“programmed” and “damage” theories, which likely inter-cross their effects in a complex way [97]. 

Therefore, ageing neurodegeneration might be considered as a consequence of an multifactorial 

cellular process [98] in which oxidative stress is involved as one among others factors together with 

the deregulation of metal homeostasis in neuronal cells (e.g. zinc [99]). From the seminal Harman’s 

work [100], the oxidative cellular damage produced by an uncontrolled production of free radicals has 

been recognized as a primary pathway which provokes the loss of neuronal capacity in old age. From 

this point of view, it results plausible to link oxidative stress in aging with neuro-pathologies 

characterized by neuronal damages associated with oxidative processes and a decrease in antioxidant 

defences. 

AD is characterized by synaptic loss and also by apoptotic neuronal deterioration which have 

been attributed to the appearance of (i) beta-amyloid proteins (Aβ), a sort of intrinsically disordered 

proteins [101], which can clump together to form extracellular amyloid plaque deposits, and (ii) 

intraneuronal neurofibrillary tangles composed of the protein tau in a hyperphosphorylated form [102]. 

Great effort has been dedicated to the amelioration of the symptoms of this neurodegenerative disease, 

based mainly on a clinical approach so-called “amyloid cascade” process which hypothesizes the 

presence of Aβ fibrils and plaques at the start of a number of steps which lead to the appearance of 

neurofibrillary tangles accompanied by neurodegeneration and clinical signs of dementia [103-107]. 

During the last two decades this hypothesis has provoked great attention and also an interesting 

debate since some findings seem not to fulfil the predictions coming from the “amyloid cascade” 

hypothesis, especially those pointing to a possible treatment of AD by reducing the Aβ amyloid 

plaques [108-111]. In addition, some positive outcomes in clinical trials related to effects on tangle 

formation [112] do not appear to be consistent with several findings [113-116] which identify Aβ 

smaller aggregates (“soluble oligomers”) as the main toxic form of Aβ rather than Aβ fibrils. However, 

a recent study on Aβ fibrils, highlights how these aggregates present in senile plaques, retain redox 

activity while they remain bound to the Cu(II) ions, giving rise to ROS generation from H2O2 

degradation [117]. Zn(II) interferes with H2O2 degradation if it is coincubated with Aβ fibrils and 

Cu(II) probably because of the redox-inert features of Zn(II) which elicits: a) a competitive 

displacement of Cu(II) from their binding sites or a Cu(II) relocation in a low-affinity secondary 

binding site [118,119], or b) a disruption of the Aβ aggregate morphology which contributes to reduce 

the redox ability of Cu(II)-Aβ complex [117]. These conclusions coincide to some extent with the high 

dynamics exhibited by labile metal-Aβ associations examined by Faller et al. [120]. Besides which, 
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other studies have been focused on metal dyshomeostasis in the brain (“metal hypothesis”) and its 

possible involvement in the pathogenesis of AD and other related degenerative diseases [121-126]. 

In this case, AD etiology is considered to be linked to an abnormal accumulation in brain of 

metal such as iron, copper and zinc [127,128] with a capacity to form insoluble complexes with Aβ 

molecules. These complexes are characterized by an increased resistance to metalloprotease-2 [129] 

and the ability to originate ROS [130,131]. However, it is important to note that still remains unclear 

whether metal deregulation could be a cause or consequence of the presence of Aβ aggregates or the 

result of different events coming from AD etiology. In this scenario Zn can play an important double 

role characterized by a pro-oxidant or antioxidant activity [122]. In a number of reports a Zn excess 

correlates with the formation of toxic amyloid plaques [125,132-135] involved in the direct production 

of oxidant species. This correlation is established not only in synaptic space but also in intraneuronal 

location in which an increased cytosolic levels of Zn in neurons containing neurofibrillary tangles 

[136] or the mobilization of intracellular Zn, have been related to the oxidative stress in neurons [137]. 

This point has recently been reviewed by McCord and Aizenman [138]. Metal-Aβ peptides association 

under physiological conditions is seen facilitated by the amount of Zn released in some synaptic sites. 

It has been indicated that this kind of labile association metal-amyloid peptides are increased in AD 

[139]. In principle, the situation is completely different in the cytosolic medium, Cu and Zn affinity for 

metalloproteins is high enough to leave “free” Cu(I) and Zn(II) intracellular concentrations in the 

femtomolar to attomolar range and nanomolar to picomolar range, respectively [140,141] what it 

means that Aβ, with an affinity much lower than metalloproteins, should find environments with an 

increased amount of “free” Zn to get a binding with the metal.  

Intraneuronal zinc homeostasis is mainly kept through binding to metallothionein, particularly 

MT-3 the primary isoform present in neurons [142,143]. Nevertheless, the close control of metals such 

as Cu and Zn can be modified by mild oxidation conditions. Thus, MT-3 oxidation under these 

circumstances produces Zn release[144] which may lead to a number of detrimental events [145,146] 

following the increased cellular Zn levels. In this case, it is possible that the mitochondria, which 

apparently co-regulates intracellular level of Zn along with MT-3, may take the Zn in excess released 

in MT-3 oxidation [147,148] provoking in this way interferences in electron transport chain generating 

ROS [149-152]. 

 

 

 

4. CHEMICAL AND FUNCTIONAL ASPECTS OF ZINC 

Zinc, the 23
rd

 most abundant element in the earth’s crust, having atomic number 30 and atomic 

weight 65.37, is vital in the living world. Pure zinc is a bluish-white, shiny metal, and is amphoteric in 

nature. Zinc, being colourless and diamagnetic, is invisible to most spectroscopic methods [153]. At 

first sight, these non-interesting chemical facts on the zinc are, on the other hand, closely related to the 

fact that zinc can really be considered as The Metal of Life as Kaur and colleagues entitled their recent 

review [154]. 

Most of human body zinc(II), approx. 98%, is localized in the intracellular compartment 

[155,156]. Its total intracellular concentration is in a range within hundreds of micromoles, thus it is 
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approx. 10-fold higher compared to serum levels [141,157-159]. Most of the intracellular Zn(II) is 

bound to or at least associated with proteins and peptides [160]. Thereof, app. 90 % is tightly bound 

and the rest (10%) is bound with relatively low affinities, forming a reactive Zn(II) pool able to 

interact with other intracellular substances [161]. The last, very small fraction (approx. < 0.01‰ of 

total cellular Zn(II), ranging from pM to single digit nM includes free Zn(II) ions [141]. The tightly 

bound Zn(II) ions occur mainly in metalloproteins within metalloenzymes and nucleoproteins and acts 

as the structural components of these biomolecules or as an enzyme cofactor. This fraction can be 

considered as an immobile nonreactive Zn(II) pool [141,162]. The rest of the Zn(II) ions fraction, 

which acts as a mobile reactive form [163,164], is bound to low molecular weight compounds (amino 

acids as cysteine, histidine, proline), protein metallothionein (MT) or organic acids (citrate, oxalate) 

[165-167]. If there is a focus on cellular functions of Zn(II), determination of total cellular Zn(II) 

concentration is not of such importance as the determination of mobile reactive Zn(II) [161]. 

Zn(II) as the only transition metal lacking redox activity is an essential part of app. 10% of 

human proteins [162,168]. Due to a great portion of the zinc-depending proteins it is not surprising that 

Zn(II) is involved (through these proteins) in numerous key intra- and extracellular processes including 

proliferation, differentiation and apoptosis [9,169-171]. Zinc-dependent enzymes can be found in all 

classes of enzymes, i.e. oxidoreductases, transferases, hydrolases, lyases, isomerases and ligases 

[141,172]. These enzymes include so-called zinc finger domains, repetitive sequences with ability to 

bind Zn(II) ions. Those domains consist of mostly histidine and/or cysteine. Zinc fingers are able to 

form complex with DNA based on interactions between α-helix of the zinc finger and DNA specific 

bases [173]. Function of zinc fingers consists not only in DNA recognition and transcriptional 

activation, but also in RNA packaging, protein folding and apoptosis, in which regulation is important 

not only in development of tissues, but also in neoplastic transformation and proliferation [169,170]. 

Based on the involvement of Zn(II) in the complex regulatory network, precise mechanisms to 

maintain intracellular Zn(II) level exist [174]. Zn(II) pool is maintained by two types of proteins: (a) 

zinc-binding proteins (mostly by metallothionein), which act as buffer and donor of Zn(II) for 

intracellular processes, and (b) zinc transporters, which are responsible for zinc fluxes into/from cells 

and organelles. A key regulator of intracellular free zinc level is metal regulatory transcription factor 1 

(MTF-1, also called MRE-binding factor) [175]. This 753 amino acids transcription factor directly 

responds to the elevated Zn(II) level and induces the transcription of MT and main zinc transporter 

responsible for its export, ZnT-1 (discussed below) [176-178]. This auto-regulatory loop maintains 

narrow optimal limits of intracellular Zn(II): when the level of MT and ZnT-1 is elevated, more free 

Zn(II) may be buffered (i.e. bound to MT) and more zinc may leave cells (through larger amount of 

membrane transporters) [7]. 

 

4.1. Zinc transporters 

The sophisticated control of systemic and cellular zinc homeostasis is essential for human 

health. Therefore, a number of proteins such as various zinc permeable and transport membrane 

proteins and MT are employed in the body for this control. Zn(II) cannot freely pass through 
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membranes, thus, special membrane transporters have been developed in a cell. Zn(II) transporters are 

transmembrane proteins, which transfer Zn(II) ions through cellular membranes [7,174]. Most of them 

are localized both on plasmatic and on organelle’s membranes. 

Two families of mammalian zinc transporters exist. Zinc-Iron Permease transporter (ZIP) also 

called Zrt-Irt-like protein, or solute-linked carrier 39 (SLC39) family and Zinc transporter (ZnT, 

SLC30) family [179,180]. ZIP transporter family is responsible for the influx of Zn(II) ions to the 

cytoplasm, in other words for the transporting of Zn(II) ions from extracellular compartments or from 

intracellular organelles to the cytoplasm. ZnTs are responsible for the opposite action, i.e. the efflux of 

Zn(II) ions from cytoplasm (transport from cytoplasm to the organelles or to the extracellular matrix) 

[181]. Transport mechanisms of these proteins are not fully understood, however, it is expected that 

there is ATP-independent facilitated diffusion, secondary active transport or symport mechanism 

[174].  

Regulation of expression of both transporter families is not yet fully clear, however, in general, 

Zn(II) has antagonistic effect on transporters: whereas low Zn(II) load induces expression of zinc 

importers - ZIPs, high Zn(II) level induces expression of zinc exporters - ZnTs [181]. However, 

accumulating evidence has revealed that the coordinated zinc mobilization by ZIP and ZnT 

transporters is indispensable for maintaining zinc homeostasis. Thus, it plays critical physiological 

functions and profoundly affects health positively or negatively, as it is involved in a wide variety of 

diseases. Relative to the handling of dietary zinc is the involvement of ZnT1, ZIP4, and ZIP5 in 

intestinal zinc transport, involvement of ZIP10 and ZnT1 in renal zinc reabsorption, and the roles of 

ZIP5, ZnT2, and ZnT1 in pancreatic release of endogenous zinc. These events are major factors in 

regulation of zinc homeostasis. Other salient findings are the involvement of ZnT2 in lactation, ZIP14 

in the hypozincemia of inflammation, ZIP6, ZIP7, and ZIP10 in metastatic breast cancer, and ZnT8 in 

insulin processing and as an autoantigen in diabetes [180]. 

 

4.2. Metallothionein 

MT (Fig. 2) is currently classified in 15 families [182]. Mammalian MTs are single-chain 

polypeptides of 61 to 68 amino acid residues. Position and number of the cysteine residues are highly 

conserved and forms cys-x-cys, cys-x-y-cys, and cys-cys motifs, where x and y are non-cysteine amino 

acids. There are no free thiol moieties, and divalent metals are bound by sulphur atoms in thiolate 

clusters with a tetrahedral geometry [163]. The binding affinity varies between metals with Cu having 

the greatest stability constant followed by Cd and Zn. 18 different metals may bind to MT, but only 

Cu(I), Cd(II), Pb(II), Ag(I), Hg(II) and Bi(II) can displace Zn [183,184]. MT has two domains: the 

more stable α domain (C- terminal), which incorporates up to four divalent metal atoms, and the more 

reactive β domain (N- terminal), which contains only up to three. The exchangeability depends upon 

the metal species, and under in vivo conditions, MTs exist mainly in Zn form or as mixed-metal 

proteins. The tertiary structure of MT is dynamic and Zn and Cd exchange rapidly within the β 

domain, more slowly in α domain, and may also be exchanged with other ions bound to intracellular 

ligands. MT has also been found to donate metal ions to higher-affinity ligands or other proteins [185]. 
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Figure 2. Metallothionein (MT) in zinc trafficking and functions. ALAD, delta-aminolevulinic 

dehydratase; ER, estrogen receptor; MMP-9, matrix metalloproteinase-9; MT- metallothionein; 

NF-κB, nuclear factor-kappa B; Cu/Zn SOD, Zn/Cu superoxide dismutase; Sp1, specificity 

protein 1; TFIIIA, transcription factor IIIA; TTK, tramtrack; ZnT-1, zinc transporter  1. 

 

In mammals, four distinct MT isoforms designated MT-1 through MT-4 exist, whereas they are 

monomeric proteins, containing two metal-thiolate clusters [143]. In humans, at least 10 to 17 MT 

genes, clustered on chromosome 16, are functional and encode multiple isoforms of MT-1 (MT-1A, -

B, -E, -F, -G, -H, -I, -J, -K, -L, and -X) and one isoform of MT-2 (MT-2A), single genes code for MT-

3 and MT-4 [186,187]. Heterogeneity of isoforms results from posttranslational modifications 

(acetylation) and/or variations in heavy metals content (metalloforms). Isoforms are distributed in 

various ratios within single tissues and have different rates of degradation [188]. Although the general 

physicochemical properties of MT isoforms are similar, they have specialized biological functions 

[185]. The first discovered MT-1/MT-2 are widely expressed isoforms, whose biosynthesis is 

inducible by a wide range of stimuli, including metals, drugs, and inflammatory mediators [189]. In 

contrast, MT-3 and MT-4 are metal-non-inducible proteins, with their expression primarily confined to 

the central nervous system and certain squamous epithelia, respectively. MT-1 through MT-3 have 

been reported to be secreted, suggesting that they may play different biological roles in the 

intracellular and extracellular space [190]. Experiments on MT found significant differences in zinc-

binding affinities of cysteine clusters [191]. Affinity varies in nanomolar to picomolar range of Zn(II) 

concentration, i.e. in at least three orders of magnitude [141]. In addition, there were published papers 
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studying the influence of oxidation on polymerizing of MT and its capacity to bind Zn(II) ions 

[192,193]. 

Metallothioneins play a key role in metabolism, transport and storage of heavy metals, 

particularly Zn(II) [141,194]. Schematic drawing of MT role in Zn trafficking and functions is shown 

in Fig. 2. When Zn(II) ions get into a cytosol through zinc transporters, it is immediately buffered by 

MT, thus the free Zn(II) ions level is maintained on very low level, in picomolar to nanomolar range 

[141]. Due to signalling roles of free Zn(II) ions, MT play an important role in this process because of 

its level of regulation. Whether zinc(II) level exceeds the buffering capacity of MT, it is being 

eliminated out of cells by ZnT-1 exporter and subsequently, Zn(II) induces expression of MT and ZnT-

1 by binding to transcription factor MTF-1 that binds to metal responsive elements (MREs) which 

regulate MT expression [163]. It is not surprising that there have been developed several different 

assays and test to detect and to determine MT [192,193,195-210] 

 

 

 

5. ZINC AND ITS INVOLVEMENT IN OXIDATIVE STRESS 

Because of zinc omnipresence and importance in the structural maintenance and the activity of 

a high number of proteins [211], its excess and deficiency might cause a significant alteration in the 

cell status including oxidative stress through an excessive generation of reactive oxygen species (ROS) 

[212]. Therefore, zinc homeostasis is critical for cell survival in such a way that zinc concentration can 

only vary within a narrow range. Despite the inert redox properties of Zn under physiological 

conditions there is a large number of the indirect oxidative effects which have been attributed to 

changes in Zn content in cells, tissues and complete living organisms. Oxidative stress as a 

consequence of ROS generation in Zn deficiency is a recurrent topic in a number of papers (reviewed 

in [213]). ROS production has been observed in Zn-deficient experimental animals [214-218], as well 

as in limited Zn cultured eukaryotic/prokaryotic organisms [219-222]. 

The source of ROS under limited zinc conditions is not clearly understood yet. Several 

mechanisms have been proposed to explain the role of zinc deficiency in ROS generation in isolated 

cells as well as in multicellular systems. In general all of these mechanisms imply to recognize that Zn 

acts as an antioxidant [223-226] since a limited availability of Zn appears to be correlated with an 

inactivation of the defences against the oxidative stress. A first mechanism considers that low level of 

Zn induces ROS generation due to the lack of regulation of antioxidant proteins (namely Cu/Zn 

superoxide dismutase (SOD) or MT) or proteins that indirectly modulate oxidant response in cell 

(inhibition of N-methyl-D-aspartate receptor) [227,228]. Secondly, it is also postulated that Zn can 

compete with Cu or Fe for membrane binding sites therefore a low Zn level makes it unable to 

compete with active redox ions Cu and Fe [229]. A third mechanism proposes a protection role for Zn 

towards thiol moieties in proteins which would likely be exposed to oxidation under low concentration 

of Zn [223]. Finally, the up-regulation of antioxidant genes (transcription factor NF-E2-related-factor 

2) is considered as one of the major antioxidant mechanism in which Zn ion appears to be involved 

[230]. With regard to the first mechanism, the role of Zn consists of the maintenance of adequate level 

of antioxidant proteins. One of these proteins is metallothionein, a cysteine-rich proteins family 
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involved in cellular defence against the oxidative stress [231,232] which decreases in some 

pathological states. It is known that diabetes causes Zn deficiency [233] and in a recent paper it has 

been reported that OVE26 transgenic type 1 diabetic mouse model shows a significant increase in 

oxidative hepatic damage [234]. It was observed that Zn supplementation in OVE26 mice allowed a 

significant reversal of the pathological hepatic changes, including the oxidative effects, through a 

mechanism of MT up-regulation, thus supporting the protective and antioxidant role of Zn. 

On the other hand, not just one response in the activity of antioxidant proteins is obtained as a 

consequence of low cellular Zn levels. In this regard, ROS production linked to a low available Zn 

levels, is accompanied by a SOD increased activity as noted in several studies [220,221,235,236]. 

However a decrease of level and activity of cytosolic SOD1 is observed in the yeast growth under 

limited Zn conditions [237]. But, in this case after the SOD1 overexpression and repletion of Zn levels 

oxidative stress was not eliminated. Beside this fact, it has been reported that Pb toxicity in zebrafish 

(Danio rerio) liver does not increase SOD activity as might be expected after an increased ROS 

generation induced by Pb [238]. This phenomenon results from conformational and functional changes 

in Cu/Zn SOD, which releases Cu(II) and Zn(II) from the catalytic pocket of SOD provoking enzyme 

inactivity. From these facts it could be derived that there is no simple linear correlation in the Zn level, 

antioxidant proteins activity and suppression of the oxidative stress. 

In relation to the second mechanism cited above, it is known that two possible pathways could 

originate interferences in ROS formation. One of them interferes by removing (“pulling effect”) active 

redox metal from its binding site by using a high affinity chelator and the other one involves a 

replacement (“pushing effect”) of the redox-active metal by another inert metal. Both pathways allow 

prevention of Fenton reaction through the elimination of catalytic activity of redox metal. The role of 

Zn appears basically related to the displacement of active redox metal thus deactivating its capacity to 

transfer electrons in a particular environment [239-241] so that, in a Zn deficiency status, this 

mechanism could not be reached. 

The third mechanism mentioned above attributes a Zn antioxidant activity as a result of the 

protection of thiols which could be accomplished in three possible ways: a) by direct binding of Zn to 

the thiol moieties; b) by a conformational change in thiol moieties; and c) by chelation of a Zn ions 

next to thiol moieties which produces a decreased thiol reactivity by a steric hindrance [242]. Zinc 

binding in protein structures can be disrupted by molecules such as NO, H2O2, oxidized glutathione 

(GSSG), which lead to Zn release, triggering several regulation actions as a consequence of the 

availability of “free” zinc [243,244]. This process may compromise the activity or function of the 

protein previously bound to Zn. As indicated, releasing zinc from thiol-Zn bonds by oxidant molecules 

may or may not affect the activity of the protein including the capacity to bind to DNA, the activation 

or inhibition of signalling activity in kinase or phosphatase, the nuclear transport of signalling proteins. 

In addition, Zn release can act directly in modulation of signalling cascades, the regulation of 

glutathione homeostasis or in the activation or inhibition of kinases and phosphatases (reviewed in 

[226]). 
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6. DETERMINATION OF ZINC IN HUMAN BODY  

The challenge of the tracing of zinc is to perform the metal speciation and the determination of 

the chemical equilibrium of the metal in both free form and when complexed with proteins. Numerous 

analytical techniques have been developed and adapted to qualify and accurately quantify the zinc 

content in biological matrices (Zn records obtained by common analytical techniques are depicted in 

Figs. 3A-C). The most common analytical techniques are inductively coupled plasma mass 

spectrometry (ICP-MS), electrothermal atomic absorption spectrometry (ETAAS) and total reflection 

X-ray fluorescence (TXRF) because of the high sensitivity and low sample quantity requirements of 

these methods [245]. Electrochemical methods offer possibilities to be miniaturized and thus employed 

for development of portable devices for zinc analyses [246]. 

 

 
 

Figure 3. Illustration of Zn records by using various analytical methods. (A) Electrochemical record 

(differential pulse voltammogram) of Zn in 0.2 M acetate buffer (pH = 5) as electrolyte, 

showing the typical Zn peak at potential of -1.05 V. (B) Atomic absorption spectra of Zn, and 

(C) Energy dispersive spectrum of Zn. 

 

6.1. AAS and ICP 

ICP-MS has been widely used to detect Zn in biological matrixes such as blood and urine. This 

technique is very sensitive as well as being accurate and precise. Although there are numerous 

manuscripts in literature which utilizes ICP-MS to detect Zn in human body, we have focused on five 

manuscripts. These five manuscripts reported are based on Zn intakes study by a human group. 

ICP can be employed as a sequential method for measuring Zn in serum as was shown in [247]. 

The method is as sensitive as atomic absorption for zinc (sensitivity: 0.11 μmol/l) for patients receiving 

total nutrition therapy or hemodialysis. A reference interval was established with 34 sera of control 

subjects (19 men, 15 women) which showed an average zinc, copper and aluminium of 14.5 (S.D. 2.6), 

17.3 (S.D. 2.1) and 0.32 (S.D. 0.12) μmol/l, respectively. This method does not require a simultaneous 

ICP spectrometer and can be performed with 1 ml of serum in a single tube, using a routine sequential 

ICP spectrometer. 

In another study, the performances of a cross-flow nebulizer and a direct-injection nebulizer 

(DIN) were compared for the determination of zinc in human and urine by ICP-MS [248]. Results 

obtained by ICP MS using calibration with aqueous standard solutions were found to be in good 

agreement with those obtained by flame AAS for a batch of real blood plasma and urine samples. 



Int. J. Electrochem. Sci., Vol. 11, 2016 

  

4487 

Heitland et al. (2006) described the detection of Zn in urine samples of 72 children and 87 adults from 

two geographical areas of Germany by using inductively coupled plasma mass spectrometry (ICP-MS) 

with a new octopole based collision/reaction cell. The urine samples were analysed directly after a 

simple 1/5 (v/v) dilution with deionised water and nitric acid with exceptional analytical performance 

[249]. Goulle et al. (2005) utilized inductively coupled plasma mass spectrometry (ICP-MS) to detect 

Zn in human whole blood, plasma, urine and hair with Rhodium as internal standard [250]. 0.4 ml of 

the sample was diluted with purified water, acid, triton X100 and butanol. The urine sample results 

were corrected for creatinine enzymatic activity. Hair samples (25 mg) were acid mineralized after a 

decontamination procedure and diluted as previously described for biological fluids. Adler et al. 

(2015) developed and validated a simplified sample preparation for the analysis of Zn in whole blood 

[251]. Analytical measurement range was from 50 to 1500 μg/dL, limit of quantification of 50 μg/dL 

with coefficient of variation 14%. 

Atomic absorption spectrometry (AAS) has been extensively utilized for the determination of 

Zn in biological samples [252-254]. In literature there are a great number of manuscripts which 

utilized AAS for analyses of human biological matrixes such as blood and saliva. For instance, ET 

AAS technique was reported as a suitable approach for the determination of sub-nanogram amounts of 

Zn in aqueous and blood serum matrices [255]. Burgura-Pascu et al. (2007) reported an automated 

method for the determination of zinc in human saliva by ET AAS after on-line dilution of samples with 

a significant reduction of sample consumption per analysis (<0.4 ml including the dead volume of the 

system). Zinc levels in saliva samples from 44 healthy volunteers, 15 male and 29 female, with ages 

between 20 and 51 years (mean 30.50 ± 9.14 years) were in the range 22 – 98 µgl
−1

 (mean of 55 ± 

17µgl
−1

), similar to some and different from others reported in the literature. It was found that zinc 

values for male were statistically higher (p = 0.006) than for female [256]. 

 

6.2. Electrochemistry 

Electrochemistry is an advantageous analytical tool, which is cost effective, portable and fast. It 

has been widely employed in biological matrixes [203,257-259] and pharmaceutical [260] due to its 

continuance, sensitivity, reproducibility and selectivity towards many target analytes [261]. Stripping 

analysis in particular is a powerful and simple tool to determine trace target metal species. It has been 

widely used in environmental or clinical samples due to its inherent sensitivity. 

Tripathi et al. (2001) used anodic stripping voltammetry (ASV) with the use of a hanging drop 

mercury electrode and with complementary atomic absorption spectroscopy to quantify zinc in infants 

[262]. In the study the whole blood samples of Mumbai and Hyderabad children was determined. 576 

blood samples of children (3 – 6 years old) were collected during 1996 – 1998 and analyzed for Zn 

together with other biometals. Potentiometric anodic stripping voltammetry can be employed also after 

sample digestion as was shown in human blood samples [263]. Using this method, the levels found in 

the whole blood sample in a group of 82 people were of Zn: 6.95 ± 1.08 μg/ml.  Kruusma et al. (2005) 

described three different electroanalytical techniques for the determination of zinc in blood [264]. The 

direct determination in diluted blood via anodic stripping voltammetry at glassy carbon and the use of 
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nafion-coated glassy carbon mercury electrodes were reported to lack the necessary sensitivity whereas 

an acoustically assisted double extraction followed by sono-ASV using a glassy carbon electrode was 

found to be rapid, reliable and sensitive. Crew et al. (2008) on the contrary reported in human sweat, 

the development of a novel electrochemical assay for Zn, which involves the use of disposable screen 

printed carbon electrodes (SPCEs) [265]. The method was applied to the determination of the analyte 

in sweat from 10 human volunteers. The concentrations were between 0.39 and 1.56 µg/mL, which 

agrees well with previously reported values. 

Other possibilities of electrochemical determination of heavy metals are ion-selective 

electrodes, which define the selectivity of of a sensor via selective complex formation with the analyte 

[266]. Several ion-.selective elecrodes have been developed and tested for Zn(II) determination in 

biological sample, for example [267-270]. However these electrodes often suffer from poor selectivity 

and robustness for determination in biological samples. The last attempt is polymeric Zn(II) selective 

electrode based on 2,6- diacetylpyridinebis(benzenesulfonylhydrazide) ligand have been prepared and 

tested for Zn(II) quantification in wastewaters. The results were in good agreement with AAS and the 

authors steted, that  [271].   

 

 

7. CONCLUSIONS  

It is clear that zinc does play a substantial role in metabolism, organism protection and its 

deficiency is involved in the development of different diseases as low levels found in 

neurodegenerative diseases such as Alzheimer's disease (AD) or Parkinson's, liver failure, renal 

dysfunction, heart problems and different types of cancer. However, the direct effects on prevention or 

treatment of these pathological states have to be further elucidated. Despite this fact, an adequate 

intake therefore is necessary to sustain proper metabolic and tissue functions. 

On the other hand, the discovery and determination of Zn biomarkers might be useful as new 

biological insights applied in prevention, molecular diagnosis, prognosis and treatment of different 

pathological states identifying patients at high-risk status of disease. Zn is now being extensively 

investigated for utilization in a wide area ranging from therapeutic activity, drug and gene delivery, to 

nanotechnology with promising outcomes, and thus in can be stated that zinc will attract the research 

attention in the future. 
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