
  

Int. J. Electrochem. Sci., 11 (2016) 1370 - 1381 

 

International Journal of 

ELECTROCHEMICAL 
SCIENCE 

www.electrochemsci.org 

 

Short Communication 

Study of Silicon Composite for Negative Electrode of Lithium-

Ion Battery 
 

T.L.Kulova
1,*

, A.A.Mironenko
2,3

, A.M.Skundin
1
, A.S.Rudy

2,3
, V.V.Naumov

2
, D.E.Pukhov

3
 

1
Frumkin Institute of Physical Chemistry and Electrochemistry, 31-4 Leninskii prosp., 119071 

Moscow, Russia 
2
Yaroslavl Branch of the Institute of Physics and Technology, 21 Universitetskaya ul., 150007 

Yaroslavl, Russia 
3
Demidov Yaroslavl State University, 10, Sovetskaya ul., 150000 Yaroslavl, Russia

 

*
E-mail: tkulova@mail.ru 

 

Received: 10 November 2015  /  Accepted: 30 November 2015  /  Published: 1 January 2016 

 

 

Using of layered silicon-based composites instead of thick-film silicon electrodes is an effective way 

for improvement of their cycling stability. In the present work, the transformation of electrode with 

layered Si-O-Al composite at cycling is studied. Fresh prepared electrodes have columnar morphology 

with average pillars’ diameter of 50 nm and inter-pillar distance 1–2 nm. After 100 cycles, the 

columnar morphology remains as a whole, but total thickness of layered composites increases by 7–10-

fold. This phenomenon is likely to be caused by both structure changes and SEI formation. 
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1. INTRODUCTION 

Nowadays the specific capacity of negative graphite electrodes in commercial lithium-ion 

batteries reached its maximum value, which is close to theoretic value of 372 mAh/g. The only way to 

increase the specific capacity of battery is the transition to new materials with much higher specific 

capacity of lithium insertion than carbon materials. The most promising (in terms of specific capacity) 

is the silicon whose theoretical specific capacity is 4200 mAh/g [1]. It is well known that crystalline 

silicon cannot be used as negative electrode material because of fracture of the electrode during lithium 

insertion due to large volumetric expansion [2–5]. It was cogently shown in many works [6-11] that 

thin films of amorphous silicon are able to reversibly cycle without significant capacity loss. The 

thickness of films in quoted articles is from 50 to 300 nm. The further increase in thickness of 
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amorphous silicon leads to fast degradation during the cycling, which is caused by destruction and 

partly flaking of films from substrate. Film stability during the cycling can be enhanced using the 

composite materials among which the popular are the composites of silicon with carbon. There are 

many publications dedicated to such composites and the reviews on them one can find in [1, 12 and 

13]. Among the composite electrodes the particular interest is devoted to electrodes, whose active part 

consists of plurality of very thin layers of silicon and another material. Layered electrodes made from 

silicon and carbon composites are described in [14–16], electrodes from silicon and silver composites 

are described in [17, 18], silicon and germanium ones in [19], silicon and iron ones in [20] and even 

just porous and nonporous silicon in [21]. In our previous work [22], thin film electrodes with 

alternated layers of silicon and oxidized silicon whose constitution is noted as SiOx were investigated. 

There are notifications in literature that thin film electrodes made of silicon-aluminum alloy reveal 

high stability during the cycling and this fact was partly explained by higher conductivity of such films 

in comparison with pure silicon. [23–28]. 

In this paper, we report on experimental study of electrochemical properties of electrodes with 

thin-layer Si–O–Al structure, made by magnetron sputtering technique, and the study of transformation 

of such electrodes during the cycling process.  

 

 

 

2. EXPERIMENTAL METHODS AND MATERIALS 

Electrodes were manufactured by magnetron sputtering by using “Oratoria 22” instrument. The 

titanium foil with thickness 15 μm was used as a substrate. Before the sputtering this foil was treated 

by H2SO4:HF:H2O (1:1:20) mixture for 30 s at room temperature. Si–O–Al composite film was 

deposited by using simultaneously silicon and aluminum targets. Before the sputtering process, the 

substrate was heated to 140 °C, whereas the temperature of sputtering was 70 °C with no further forced 

heating of substrate. The residual gases pressure was 2.5 10
-5

 Torr. Argon and oxygen were used as a 

working gases. During the sputtering, the consumption of oxygen was 8 cm
3 

min
-1

 at 4.8∙10
-5

 Torr 

pressure. Total oxygen and argon pressure was 2∙10
-3

 Torr. The power of magnetron discharge 

maintained at 420–480 W for silicon target and 200–210 W for aluminum target. We produced 

electrodes with silicon composite in the form of four-layer structure where the first and the third layers 

(counting from substrate) were enriched with aluminum and the second and the fourth layers contained 

less aluminum. For lacking of aluminum, we turned off the aluminum target. As a witness for defining 

of composure, thickness, morphology of surface and cleavage of silicon containing films we used the 

silicon wafers. 

The study of thickness, morphology of surface and fracture cross-sections of silicon containing 

composite films was conducted on silicon witnesses on scanning electron microscope (SEM) with high 

resolution SUPRA 40. The electron microscope was equipped with an X-ray spectrometer INCAx-act 

for energy dispersive microanalysis. Analyses of the film composition were conducted normally to the 

surface of the film at about 1 μm depth and therefore it provided the average composition in a layer up 

to one micron thick. The composition resolution of the films was conducted with the mapping. 
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Wherein the INCAx-act analyzed the narrow band by fracture cross-section from silicon substrate to 

film surface. Such a technique gave us opportunity of qualitative distribution of elements by film 

thickness. This method cannot give the precise quantitative composition in each point because of quite 

large spot during the scanning and this fact distorts the composition map and doesn’t allow to resolute 

layers less then 100–200 nm.  

Electrochemical measurements at Si-O-Al-electrodes were carried out in sealed three-electrode 

cells of flat-parallel construction. Cells contained one working electrode, two lithium counter and one 

lithium reference ones. We used 1М LiPF6 in ethylene carbonate - diethylcarbonate - 

dimethylcarbonate (1:1:1) mixture as an electrolyte. The cells were assembled in glove box with 

humidity about 10 ppm. We used non-woven polypropylene separator. The electrolyte humidity was 

less than 20 ppm. Cycling of electrochemical cells was performed with computerized cycler of Buster 

Co. (St. Petersburg, Russia). Potential limits of cycling were 0.01–2.0 V relatively to lithium reference 

electrode. After cycling the cells were disassembled and working electrodes were thoroughly rinsed by 

dimethoxyethane in a glove box.  

This work provides the results of cycling of two identical samples. Sample #1 was tested at 270 

mA/g (0.11 mA/cm
2
), that corresponded to С/12 mode. Sample #2 was tested at 1080 mA/g (0.44 

mA/cm
2
) that corresponded to С/3 mode. (So-called С- mode or C-rate expressed in mA/g is known to 

be numerically a fraction or multiple of the rated capacity expressed in mAh/g). The calculated 

theoretical capacity of Si-O-Al composite was equal 3240 mAh/g. The value of average load of Si-O-

Al composite was 0.41 mg/cm
2
 taking composite density of 2.1 g/cm

3
 into account.  

 

 

 

3. RESULTS AND DISCUSSION 

3.1. Physico-chemical characteristics of original Si-O-Al composite films 

The views of fracture cross-sections of original Si-O-Al films are presented in Figure 1. The 

electron microscopy data show that the thickness of silicon-containing composite was 2036 nm. Dark 

bands at cross-section correspond to amorphous silicon while light bands correspond to aluminum-

enriched silicon (Figure 1a). At higher magnification, one can see (Figure 1b) columnar morphology of 

Si-O-Al composite, i.e. such composite looks like a porous film, which consists of vertical pillars 30–

50 nm in diameter. On Figure 1c the top view of Si-O-Al composite is presented. At 100 kx 

magnification the globules of 50–100 nm size which were formed by small particles of 10–20 nm size 

are clearly seen.  

The average elemental composition of films is shown in Table 1. As it is shown in the Table 

the Si-O-Al composite contains about 75.5 at. % silicon, 11 at. % oxygen, and 6.86 at. % aluminum. 

Moreover large amounts of carbon were defined (about 6.4 %) and traces of iron.  
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Figure 1. SEM images of original Si-O-Al composite film: (a), (b) fracture cross-sections at different 

magnifications, (c) top views of the surface. 
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Table 1. Chemical composition of original Si-O-Al composite film. 

 

Element Wt. %  Wt. % 

Rel. 

error 

Atomic 

 % 

C 3.02 0.34 6.44 

O 6.91 0.14 11.08 

Al 7.21 0.05 6.86 

Si 82.63 0.32 75.51 

Fe 0.24 0.03 0.11 

Total 100.00  100.00 

 

3.2. Electrochemical properties of Si-O-Al electrodes 

The discharge capacity evolution at galvanostatic cycling of Si-O-Al electrodes with different 

current loads (С/12 for sample #1 and С/3 for sample #2) is shown in Figure 2. As it is seen both 

modes show discharge capacity growth at the beginning (first 8–10 cycles). Then at C/12 and C/3 

modes one can observe stable cycling for no less than 100 cycles. Theoretical capacity of Si-O-Al 

composite is calculated 3240 mAh/g. So discharge capacity obtained in the experiment is close to the 

theoretical value. 

 

 
 

Figure 2. Changes in discharge capacity of Si-O-Al-electrodes during the cycling. Sample #1 was 

tested at 270 mA/g (0.11 mA/cm
2
), that corresponded to С/12 mode. Sample #2 was tested at 

1080 mA/g (0.44 mA/cm
2
) that corresponded to С/3 mode. 
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Figure 3. Charge-discharge curves of Si-O-Al-electrodes during the cycling. The curves are 

corresponded to 20
th

 cycles. Sample #1 was tested at 270 mA/g (0.11 mA/cm
2
), that 

corresponded to С/12 mode. Sample #2 was tested at  1080 mA/g (0.44 mA/cm
2
), that 

corresponded to С/3 mode. 

 

Increasing of capacity at first several cycles could be related to partial reduction of excess 

amounts of oxygen, which is contained in Si-O-Al composites, additive amorphosizing of this 

composite, and diminishing of resistance. However, in some cases the same event took place in pure 

silicon electrode investigation [7, 29–34]. In article [30] such growth in discharge capacity was 

explained as probable recrystallization of silicon. It should be pointed out that quantitatively such 

capacity growth at initial cycles varies a lot from paper to paper.  

The discharge capacity lost from 10th to 100nd cycles doesn’t exceed 0.11% and 0.12 % per 

cycle for sample #1 and sample #2, respectively.  

Charge-discharge curves of sample #1 and sample #2 at 20
th

 cycles are shown on Figure 3. As 

one can see, the shape of such curves is almost the same during the cycling. The differences between 

average potentials at insertion and extraction of lithium (ΔЕ) for 20
th

 cycles of sample #1 and sample 

#2 are 0.270 and 0.266 V, respectively.  

 

3.3. Physico-chemical characteristics of original Si-O-Al composite films after cycling 

After cycling i.e. after 100 cycles for sample #1 and sample #2 the morphology of Si-O-Al 

composites were studied. After cycling the cells were disassembled and working electrodes were 

thoroughly rinsed by dimethoxyethane in a glove box. The surface image of sample #1 and sample #2 

are presented in the Figure 4. Because of the volume change during lithium insertion/extraction and the 
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formation of SEI layer, the original Si-O-Al smooth surface disappears. Instead, the Si-O-Al composite 

film presents a rough and porous morphology. Cracking of the Si-O-Al film is regarded as the main 

cause of the capacity decrease.  

 

 
 

Figure 4. Morphology of surface of sample #1 and sample #2 after 100 cycles 

 

The SEM images of fracture cross-sections of sample #1 and sample #2 are presented at Figure 

5. As one can see the thickness of Si-O-Al composite during the cycling strongly increase up to 14.78–

14.90 μm for sample #1, and up to 16.81–18.58 μm for sample #2. In other words at the surface of 

titanium foil the layers with thickness by 7–10 times more than that of the original Si-O-Al composite 

is appeared. 

It is suggested that that the good cycling performance of Si-O-Al composite should be 

attributed to the maintenance of electric contact between the Si-O-Al layer and the current collector 

during cycling. This proves the advantage columnar morphology of Si-O-Al composite, i.e. such 

composite looks like a porous film, which consists of vertical pillars 30–50 nm in diameter. After 100 

cycles, the columnar morphology remains as a whole, but total thickness of layered composites 

increases by 7–10-fold.  

The elemental composition of the samples after cycling was investigated in three points: at 

surface, in the upper part of fracture cross-section and in the lower part of fracture cross-section. The 

results are presented in Tables 2.  

After cycling at the surface of electrodes, as well as in the upper and lower parts of cross-

sections fluorine and phosphorous were detected. Besides significant growth in carbon and oxygen 

content was found. All these facts are undoubtedly related to products of electrolyte reduction and as a 

consequence the formation of SEI on the sample’s surface.  
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Figure 5. Fracture cross-sections of sample #1 (a) and sample #2 (b) after 100 cycles 

 

If atomic ratio F:P in studied samples was 1:6 one could suggest that unwashed electrolyte salt 

(LiPF6) remains at the surface or in the pores of composite film. However Table 2 shows that F:P ratio 

in different points of samples varies from 1:1.02 to 1:2.0. The average value of this ratio for sample #1 

and for sample #2 after 100 cycles was 1:0.88 and 1:178, respectively.  
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Irreversible capacity of sample #1 at first cycle amounted to 14.6 % of reversible capacity, and 

at all following cycles it was from 1.5 to 1.7 %. Total irreversible capacity for 100 cycles for sample 

#1 amounted to 3.5 mAh. Total irreversible capacity of sample #2 at first cycle was 14.9 % of 

reversible capacity and varied from 0.7 to 1.0 % for the following cycles. Total irreversible capacity 

for 100 cycles for sample #2 was about 2.75 mAh. Data on irreversible capacity agree with increase in 

fluorine, phosphorus, oxygen and carbon contents for both electrodes.  

 

Table 2. Elemental composition (wt.%) of sample #1and sample #2 after 100 charge-discharge cycles. 

 

Element Sample #1 Sample #2 

Surface  

 

Cross-

section top 

Cross-section 

bottom 

Surface 

 

Cross-section 

top 

Cross-section 

bottom 

C 18,78 15,29 14,87 21,90 22,04 19,36 

O 46,27 44,33 43,25 34,87 34,45 36,34 

F 10,01 8,42 9,77 14,49 13,11 13,40 

Al 0,54 1,81 2,52 1,00 3,36 4,46 

Si 13,92 18,53 14,95 19,13 18,19 13,03 

P 9,79 11,62 10,7 7,82 8,85 6,64 

Ti 0,69 0 3,94 0,79 0 6,77 

 

Publications devoted to the study of electrolyte reduction at silicon electrodes are few and far 

between [35–38] in contrast with those at carbon electrodes. Undoubtedly, these processes are very 

complicated since both aprotic solvent and salt anion can undergo the reduction. During reduction of 

the electrolyte containing ethylene carbonate, some metastable linear alkylcarbonates 

(−Si−OCH2CH2OCO2Li, −Si−CH2CH2OCO2Li, R(OCO2Li)2) appear [35]. These alkylcarbonates can 

comprise the polymeric component of SEI, but also can interact with the traces of water and hydrogen 

fluoride (see e.g. [36]): 

(CH2OCO2Li)2 + H2O → Li2CO3 + CO2 + (CH2OH)2 , 

ROCO2Li + HF → LiF + ROCO2H. 

During the reduction of PF6
-
 anion or products of its conversions like POF3 or PF5, compounds 

with stoichiometry F:P = 1:3 form: 

POF3 + 2Li
+
 + 2e

−
 → LiF + LiPOF2, 

PF5 + 2Li
+
 + 2e

−
 → 2LiF + PF3, 

PF3 + 2Li
+
 + e

−
 → LiPF2 + LiF. 

(The presence of PF-containing species in SEI is documented also in [38]). Such processes and 

similar reactions explain obtained data of F:P ratio in SEI. 

The authors of [39] believe that SEI formation is the only (or at least, the main) reason of 

thickness increase of Si-film electrodes. The results of present study show that changes of size of 

silicon pillars per se play not less role during cycling. Similar conclusions could be found also in [40-

42].  

It is worth noting that there are no literature data on prolonged cycling of rather thick silicon 

films. The most of papers describe behavior of such electrodes for 20–40 cycles. At the same time, a 
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number of papers report about several hundreds of cycles for silicon films with thickness less than 200 

nm. In this connection very demonstrative is [43], which presents data about 400 cycles for Si-

electrodes with thickness from 100 to 520 nm, 200 cycles for 1000 nm, and only 50 cycles for 3.6 μm. 

Thus, the present work is the first evidence of enormous thickening of silicon films in the course of 

prolonged cycling. 

 

 

 

4. CONCLUSIONS 

We prepared layered Si-O-Al composites by alternate magnetron sputtering pure silicon and 

mixture of silicon and aluminum in oxygen-containing environment onto titanium foil. The composite 

thickness was more than 2 μm. Such composites were found to have columnar morphology with 

average pillars’ diameter of 50 nm, and inter-pillar distance 1–2 nm. Discharge capacity obtained in 

the experiment was close to the theoretical value and was equal to 2800 mAh/g. During the multiple 

cycles of lithium insertion-extraction the composite thickness increases. Thickness growth happens 

unequally along the electrode surface. The elemental composition of Si-O-Al films changes during the 

cycling, specifically, fluorine and phosphorous appear at the surface and in the bulk of the composite. 

Simultaneously oxygen and carbon contents increase. This suggests the formation of passive film on 

the pillars’ surface, due to electrolyte reduction. Irregularity of thickness growth of Si-O-Al can be a 

consequence of non-uniform current density distribution, which can be related with different resistance 

in different areas.  
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