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The development of a selective and sensitive electrochemical DNA biosensor for detection of the 

pathogen Bacillus anthracis is proposed here.  The technique is based on the characteristic cyclic 

voltammetry (CV) redox peaks and the very selective nature of DNA hybridization. The designed 

system consists of a self-assembled layer of mercaptohexanol (MCH) and thiol linked probe (ssDNA-

thiol) immobilized on gold-modified screen-printed electrodes. This direct detection technique studies 

the change in potential and intensity of the surface-modified screen-printed electrodes when a 5mM 

Fe(CN)6
3-

solution in 0.1M KClis presented to the electrodic system in the range between -0.5 to 0.7V.  

The increase or decrease in the electron transfer along with the varied redox potential during 

immobilization of the probe and hybridization of the target was observed as CV peak current and 

potential change. The proposed system showed reliable results with sensitivity up to 10pM and 

selective enough to distinguish signals from DNA fragments presenting 1bp mismatches. The 

fabricated system with the thiol probe once produced could be shelved for 2-3 months.Thus the strong 

selective binding nature of the DNA along with the sensitive CV characters, prove to be an efficient 

system for reliable detection of pathogens.  
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1. INTRODUCTION 

Electrochemical techniques integrating bio-molecules for biological applications are a fast 

developing area with multiple applications in natural sciences. Over the years this interdisciplinary 

technique of designing detection systems for various purposes including pathogen detection, targeted 

cancer therapy, environmental screening systems, tools for medico-clinical usage, etc. are gaining 

steadfast progression [1]. Amongst different electrochemical sensors, those exploiting DNA probes for 
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detecting microbes via DNA-DNA hybridization are being studied extensively in many fields. Main 

reasons being simple design, high sensitivity, low cost, micro fabrication possibilities, and likely 

miniaturization of the detecting system. The very nature of DNA to recognise and hybridise 

complementary nucleotide sequences makes DNA biosensor a very promising domain. 

Attempts to enhance DNA biosensors technology to be used for on-field detection with high 

reliability have greatly helped improve various aspects of this detecting system. Use of gold for DNA 

attachment through a thiol group has been extensively used due to its ability to efficiently conduct and 

amplify electrochemical signals while retaining biological activity [2-4]. The strong binding nature of 

gold to any thiol group makes it desirable for biosensor assembly [5-7]. 

Within the main factors impacting on sensor performance, optimum surface density of DNA 

probes has been reported as an important one for successful detection. Mercaptohexanol (MCH) has 

been used to backfill electrodes after probe immobilization [8] in order to control non-specific 

interactions, allowing regulating DNA surface density through incubation time. Steel et al. (2000) [9] 

also analysed the length of the DNA probe as a contributing factor. Co-immobilization of DNA probes 

with a thiol spacer have also been reported to positivelymodify the surface and affecting the DNA 

probe density [10]. Alternative approaches used reductive de-absorption of mercaptoproionic acid 

(MPA) in a mixed MPA/MCH monolayer to immobilize single stranded DNA probes (ssDNA) onto 

gold [11]  

Bacillus anthracis, a gram-positive spore forming bacterium has been a serious threat to the 

community as a bioweapon. Of the different routes of infection (cutaneous, gastrointestinal or 

respiratory), aerial dispersal of the deadly human anthrax bacteria has been proved fatal and is the most 

tailored form of bio hazardous agent [12-14]. Inadequate measures and incapacity for quick detection 

of anthrax spread terror and has claimed numerous lives in the past [15-17]. Usual methods for anthrax 

identification involve standard biological tests in the lab such as microbial culturing, immunological 

and serological tests, DNA typing and PCR methods that are time consuming and expensive [18,19]. 

Need for a fast and robust detection technique that could be used to detect presence of harmful 

microbes instantly has led to the growth of biosensor systems [20, 21].   

Diverse research in this field has led to the development of many distinctive types of detecting 

systems. Nanomaterial based biosensors have been used due to its many unique electrical, magnetic 

and optical characteristics. Its small size and high surface area also support probe attachment and 

surface modifications [22]. Sequence specific Nanopore biosensor for detecting lethal factor in anthrax 

toxin has been recently developed. Using ionic modulation of the analytes and the residence time of 

the analyte coupled with amplitude blockade events, Wang et al [23] were able to detect the target 

analyte and measure its concentration. Likewise, Pal & Alocilja [24] described an electrochemical 

transducer utilizing electrically active magnetic nanoparticles. Optical biosensors using fiber optic 

waveguide and peptide integrated ligands for anthrax spore detection have also been used [25]. 

Anthrax spore detection in liquids attempted using the sensitive Love wave sensor (surface acoustic 

wave sensor) by screening waveguides was published by Branch &Brozik [26]. 

With innovative sensors easing into the field of diagnostics and screening, an effective 

detection system for timely response and prevention before infection is yet to be perfected. Though 
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countable research articles on biosensors for anthrax detection have been previously published further 

research is still needed.  

Though many successful electrochemical DNA biosensors with or without employing self-

assembled monolayer have been already published [21], [27-30]. In this paper, we propose DOE as a 

method to statistically estimate optimum MCH-ssDNA/thiol concentrations to achieve reasonable 

surface coverage so as to improve signal detection. Usage of gold electrodeposited carbon screen-

printed electrode for MCH-ssDNA/thiol attachment aimed at successful detection of B.anthracis 

specific DNA sequences has been also attained through this paper. 

 

 

 

2. MATERIALS AND METHODS 

2.1. Instruments  

The cyclic voltammetry (CV) were performed with an Autolab III (Methrom, Switzerland) 

potentiostat/galvanostat and controlled by Autolab GPES software version 4.9 forWindows XP. 

Electrochemical measurement were performed using carbon screen-printed electrodes with a 3mm 

working area, purchased from Dropsense (Oviedo, Spain). 

 

2.2. Chemicals 

Analytical grade reagents were used as received without any additional purification from 

Sigma-Aldrich (Gillingham, UK). Deionised water (resistivity > 16 MΩ cm) was used throughout the 

experiments to prepare all solutions. 

 

2.3. Pretreatment of SPE 

Carbon screen-printed electrodes were cleaned to remove any surface impurities and to obtain a 

suitable surface for electrodeposition. The pretreatment procedure consisted in apply a potential of 

+1.6V for 120 s and +1.8V for 60 s in 0.25M acetate buffer containing 1mM KCl (pH 4.75) with 

constant stirring. This was followed by 10 cycles between 0 and +1.4V in 0.1mol per liter glycine (pH 

2.0) as described previously by Pereira et al. [31] and Regiard et al [32]. The etched carbon surface 

provided uniform and stable gold coverage. The procedure also assured reproducible voltammograms. 

 

2.4. Electrodeposition of Gold onto carbon SPE 

The procedure for gold electroplating/electrodepositing was redesigned from several successful 

papers [31], [33,34]. The pretreated carbon SPE was immersed into 0.25 mM HAuCl4 solutions 

containing 0.1M KNO3 prepared with doubly distilled water, and de-aerated by bubbling with 

nitrogen. A constant potential of -0.2 V was applied for 300 seconds. The number of cycles required 
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for proper gold coverage depended on the HAuCl4 solution concentration. Above mentioned 

concentrations achieved complete and stable coverage at 6 - 10 cycles and hence considered optimum. 

It should be noted that too high Au concentrations resulted in quick deposition but unstable coverage. 

Successful deposition was observed both physically and electrochemically by cyclic voltammetry by 

running Fe(CN)6
3-

in 0.1 M KCl as electrolyte. The gold electrodes were checked for reproducible 

voltammograms by calculating standard deviation from the peak area and peak heights. Figure 1 shows 

the standard cyclic voltammogram for gold electrode in 5mM Fe(CN)6
3-

in 0.1M KCl. The modified 

electrode washed with doubly distilled water (dried with nitrogen) was carefully stored in dark airtight 

containers for further use. 

 

 
 

Figure 1. Cyclic voltammetry of Gold deposited Carbon SPE, 10 repetitions resulted in an average 

peak height - 2.82x10
-05 

A and peak position of - 0.261V. 

 

2.5. Probe and target sequence selection 

A 20bp unique sequence from the proactive antigen gene (pag gene ID 3361714) in pXO1 

plasmid of Bacillus anthracis [35] was selected as the target sequence. Sequence was present in 

several recently sequenced B. anthracis strains in GenBank. The specific sequence flanked with Pst1 

restriction sites allowed easy access for detection and for any other molecular or genetic analysis. The 

probe sequence (30bp) was designed complementary to the target with an additional 10bp and thiol 

linker at the 5’ end (ssDNA thiol). Target sequences with 1bp, 2bp, 3bp mismatches were also 

designed (as shown in table 1) to check the selectivity of the probe-target binding and strength of the 

electrochemical cyclic voltammograms. A completely random sequence was also designed as a 

negative control to assess the selectivity and cross-reactivity of the target sequence. 
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Table 1. DNA sequences used as probe, target and mismatch in this study. 

 

 Sequence 

Thiol modified probe 

sequence 

5’- HS- (CH2) 6 –

AGTCTTCGGCACGAGGTAAAAAGTCCTCTA- 3’ 

Target sequence 5’-TAGAGGACTTTTTACCTCGT -3' 

1 bp mismatch 5’TAGAGGTCTTTTTACCTCGT 3' 

2 bp mismatch 5’TAGAGGTGTTTTTACCTCGT 3' 

3 bp mismatch 5’TAGAGGTGGTTTTACCTCGT 3' 

Negative control 5’GTTCCCTTAGCAGCTAGCTA 3’ 

 

2.6. Immobilization and hybridization of probe and target DNA: 

All probe and target sequences were obtained from Sigma Aldrich (UK) and double-checked 

for purity and concentration after dilution using the Nanodrop spectrophotometer. The ssDNA linked 

probe sequence in disulfide (S-S) form was cleaved using a NAP 10 column with 0.01M sodium 

phosphate as equilibrant. 

The concentration of both mercaptohexanol (MCH) and the probe (ssDNA Thiol) were 

optimised using design of experiments and an ANOVA model. A 3-level factorial design: 3^2 design 

studying the effects of 2 factors in 10 runs was created.  The design was run in a single block.  The 

order of the experiments was fully randomized to provide protection against the effects of lurking 

variables.   

Prior to probe immobilization, the gold deposited electrodes were immersed in an optimum 

concentration of mercaptohexanol (MCH) for 1 hour. The electrodes were then washed with phosphate 

buffer (pH 7.4) and distilled water [8, 36].Use of MCH as a self-assembled monolayer assured spacing 

between the thiol linked probes and enhanced target hybridization. 

Immobilization of ssDNA thiol probe onto gold was achieved by placing 2.0 μl of the probe 

DNA on the electrode and incubating it at 30°C for 60 minutes [7]. After incubation the electrode was 

rinsed thoroughly with 10 mM phosphate buffer (pH 7.4) followed by distilled water. Successful 

immobilization was followed by hybridization of target DNA, this was achieved by incubating the 

probe anchored electrodes with 2.0 μl of target DNA at 37°c for 60 minutes. The electrodes were 

finally washed with Phosphate Buffer (7.4 pH) and distilled water. 

Positive immobilization and detection of target sequence was confirmed by characterizing the 

electrode in 5mM Fe(CN)6
3-

 with 0.1M KCl as electrolyte. The shift in the cyclic voltammograms was 

used to identify probe anchoring and target detection. 
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3. RESULTS AND DISCUSSION 

3.1. Optimization of MCH and and thiol concentration 

Sulfur comprising compounds (like MCH) with both thiol and carboxylic acid groups have 

been identified suitable for biosensor design. The thiol group acts as a link for metallic attachments 

providing stable monolayers. It has also been evidenced that the carboxylic acid groups react 

covalently with phosphate backbone of DNA thus achieving effective immobilization and stability [37-

40]. The presence of MCH as a spacer thiol prevents the ssDNA from adhering to Au through their 

nitrogenous bases. This ensures that all the ssDNA is anchored onto the gold surface only by the thiol 

end. MCH also helps to achieve better hybridization by reducing steric and electrostatic hindrances 

occurring due to tightly packed probe DNA monolayer [8]. 

Therefore the concentration of self-assembled layer of MCH anchored on the metallic surface 

(gold) plays an important role in attaining decent target identification signal. The amount of MCH 

molecules regulates ssDNA-thiol probe anchoring and exposure of the probes for hybridization with 

target sequences. This in turn controls the shift in peak current and potential needed for target 

detection. Hence it was important to find an optimal MCH and ssDNA-thiol concentration that 

presented with maximum peak shift on immobilization that in turn increases peak-to-peak shift upon 

hybridization. While incubation time [41] and mole ratio of DNA [10] have been utilized to control the 

surface density of DNA, we used Design of Experiments (DOE) to calculate the optimal concentration 

for the system MCH/ssDNA-thiol in order to obtain an optimal peak current and potential difference 

on hybridization. The response surface design with different ssDNA-thiol and MCH concentrations as 

experimental factors was carried out. 

 

 
Figure 3. Influence of the MCH and Thiol concentration in the peak current. (A) individual 

concentration effects, (B) Interaction plot and (C) Estimated response surface. 
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The ANOVA test produced a theoretical model that fitted at 100% the experimental data for a 

shift in peak current and 68.7% for shifts in peak potential,at 95% confidence level. Both MCH 

concentration and ssDNA-thiol concentration seemed to have an effect on peak current individually, as 

visually plotted in the individual (Figure 3A) and main effects plot (Figure 3B). There is no interaction 

between variables and it is evident from these plots that peak current decreases with increase in MCH 

concentration. It was also noted that at low concentrations of MCH, an increase in the probe 

concentration [ssDNA Thiol] did not affect immobilization peak current shift significantly. The shift 

was significant when high MCH concentration and high probe concentration was used. However, as 

seen in Figure 3B, in order to maximize the signal low MCH concentrations were selected as this value 

for the variable produces the maximum shift to increase sensitivity    

Figure 3C shows the surface response for the shift in the intensity and it can be observed that at 

minimum MCH concentration the ssDNA thiol concentration to obtain maximum signal can be kept a 

low levels. The surface fits the equation: 

Anodic Peak current Shift = 1.8458x10
-5

 - 3.7760x10
-6

[MCH]- 3.6455x10
-6

[ssDNA-thiol] + 

2.3986x10
-7

[MCH]
2
 + 1.0864x10

-6
[MCH][ssDNA-thiol] + 3.5273x10

-6
[ssDNA-thiol]

2
  

The shift in potential was also a subject to DoE. As shown in Figure 4A, an increase in the 

concentration of MCH and ssDNA thiol produced an increase and a decrease of the shift potential 

respectively. The interaction plot shown in Figure 4B also shows how the lower values in MCH 

concentration offered the highest values in shift potentials (highest at the bottom of the scale) specially 

at lower ssDNA thiol concentrations.   

 

 

 

Figure 4. Influence of the MCH and Thiol concentration in the position of the target peak position. (A) 

Concentration effects, (B) Interaction plot and (C) Estimated response surface. 
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Figure 4C shows the surface response for the system and how maximum shift in target peak 

potential is achieved at high MCH and low ssDNA Thiol concentrations, respectively. 

The equation of the surface response is: 

Anodic peak voltage Shift = -4.1616x10
-2

 + 7.4846x10
-3

[MCH] - 3.2696x10
-
3[ssDNA-thiol] - 

5.9359x10
-4

[MCH]
2
 - 2.4114x10

-3
[MCH][ssDNA-thiol] + 3.2466x10

-3
[ssDNA-thiol] 

2
 

Taking all these factors into account DOE estimated a combination of 0.5 mM MCH 

concentration and 1.0 μM ssDNA-thiol concentration to be optimal towards achieving maximum yet 

stable anodic peak current and peak potential shift. MCH concentration seemed to offer the most 

important effect affecting both potential and intensity shifts. 

Under these conditions the analysis on the change in the anodic peak current and peak voltage 

of the system MCH, thiol DNA probes and target sequence was studied. Figure 2 shows the CV 

voltammograms of the gold deposited electrode at these different stages. The shift in anodic peak 

current and voltage represents the difference in electron transfer and the change in redox potential 

between the gold surface and Fe(CN)6 3-/4-. 

 

 
Figure 5. CV Voltammogram of 5mM K3Fe(CN)6 in a 0.1 KCl aqueous solution at (A) a gold 

deposited bare SPE, (B) a MCH/ssDNA-thiol linked SPE and (C) a target hybridized DNA SPE 

 

The voltammogram obtained for K3Fe(CN)6 at the gold-modified carbon SPE can be observed 

in figure 5(A), showing a well-defined curve with average anodic peak current of 3.17x10
-5

 A. After 

the immobilization of the MCH and ssDNA-thiol the voltammogram for the K3Fe(CN)6 exhibited a 

decrease in peak current to 1.84x10
-5

A, followed by further decrease to 9.08x10-
6
 A upon target 

hybridization. This seems to indicate that the anodic peak current seemed to decrease with 

immobilization and hybridization.  The voltage for the anodic peak of K3Fe(CN)6 was 0.138 V and 
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shifted to more negative values when analysed with the MCH/ssDNA-thiol modified SPE (0.036 V), 

reverting to more positive potentials (0.069V) upon hybridization of the anthrax DNA.  

The explanation for this behavior lies on the negatively charged nature of DNA and the transfer 

of electrons during the hybridization event. The gold surface will transfer the electrons from the 

Fe(CN)6
-3

 and viceversa during cyclic voltammetry to produce the characteristic voltammogram at the 

specified voltage. Modification of the gold surface by the MCH and the ssDNA-thiol will modify this 

transfer of electrons reducing the potential at which this is occurring, making it easier for the 

thiocyanate to reduce. During the hybridization of the anthrax DNA with the complementary strain of 

the ssDNA-thiol immobilized on the surface there is a restructuration of the molecules and a higher 

demand for electrons for the formation of the dsDNA, which modifies the potential at which the 

thiocyanate ion will reduce with less electrons available for the molecule, hence increasing the 

reduction potential.  

 

3.2. Bacillus anthracis detection 

Identification of Bacillus anthracis was successfully achieved by detecting the change in 

anodic peak current and potential due to the direct binding of target DNA sequence to the immobilized 

probe DNA via complimentary strand hybridization. The decreased anodic peak current could be 

explained from the hypothesis that the MCH/ssDNA-Thiol layer on the gold surface creates a 

repulsion between Fe(CN)6
-3

 and the negatively charged phosphate backbone of DNA to gold thus 

restricting electron transfer [42]. This results in a decreased anodic peak current. Further decrease in 

peak current is presumed as a result of DNA-DNA hybridization, an additional surface modification 

restricting electron flow and lowering peak current value. These results were in agreement with 

findings reported in the literature [7, 30, 43] and with many more extensively studied electrochemical 

analyses using peak current change to identify biomolecules directly and indirectly [29, 32, 44, 45]. 

Also studies involving redox reactions of DNA [42] suggest that the decrease in peak current after 

hybridization might be due to the difficulty in oxidizing duplex form of DNA, as a result of hydrogen 

bond formation between the ssDNA probe and target strands. 

An interesting outcome in our study is the consistent peak voltage shift upon immobilization 

and hybridization. Different authors in the literature [7, 30, 43] speak about the increase in peak 

voltage upon ssDNA monolayer linkage and target DNA binding on different modified surfaces of 

gold and glassy carbon electrode. Serpi et al [46], reported a decrease in peak voltage separation with 

surface modified carbon nanotube paste electrode. Whilst all of the aforementioned papers used 

change in peak current, none of them use peak potential shift directly to detect DNA. 

The steady and consistent decrease and increase of peak potential upon immobilization and 

hybridization respectively could also be used as a parameter for target detection. Figure 6 shows the 

different peak potentials for the numerous tested SPEs upon ssDNA-thiol anchoring and target binding 

with specified uncertainties.  

Even though the immobilization and hybridization peak currents and potentials seem to vary 

from electrode to electrode, the peak-to-peak separation was always significant enough (at 99%) to 
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detect probe immobilization and target hybridization. This variation could be related to the quantity of 

gold deposited on the carbon electrode influencing the available surface for DNA attachment. 

To test this effect, the peak currents of Au deposited SPE were normalized with the quantity of 

gold deposited, measured by X-ray Fluorescence; the resultant normalized peak current values were 

consistent with all the electrodes indicating that concentration of gold did affect electron transfer. 

(Table 2). 

 

 

Table 2. Normalization with respect to deposited Au concentration. 

 

Screen Printed 

Electrodes 

AU 

(ppm) 

Actual 

Peak 

current  

Normalized 

Peak 

current  

1 902.32 3.64E-05 4.03E-03 

2 699.22 2.82E-05 4.03E-03 

3 849.54 3.43E-05 4.04E-03 

4 793.63 3.20E-05 4.03E-03 

5 688.12 2.77E-05 4.03E-03 

 

3.3. Uncertainty 

The gold electrodes were checked for reproducible voltammograms by calculating (3σ) 

standard deviation with 99% significance for the peak current and peak potentials.  

 

 
Figure 6. Uncertainty calculation - (3σ) standard deviation with 99% significance. 

 

As different SPEs produced slightly different peak currents and voltages with respect to gold 

concentration it was essential to ensure that the peak-to-peak differences were still a reliable indication 

of DNA detection. Figure 6 shows the 3σ values above and below the average anodic peak potential 
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and current. It is clear from the readings that the thiocyanate values for the gold SPE, immobilised 

DNA-thiol and DNA hybridization events do not significantly overlap. The shift was always 

significant enough to differentiate and detect immobilization and hybridization. 

 

3.4. Effect of target concentration on Anodic Peak current 

Increased target DNA concentration was found linear showing a decrease in the anodic peak 

current. Keeping the optimal MCH-Thiol (0.5mM and 1.0μM) concentration constant, target 

concentrations were increased from 100pM to 2μM. The calibration curve showed a regression 

coefficient (r
2
) of 0.9857. As more and more target DNA gets hybridized, the electron transfer gets 

restricted further and hence the weak anodic peak current signal. This further adds on to the theory that 

surface modification prevents free flow of electrons resulting in a lower anodic peak current value. 

Target concentrations did not have any significant effect on peak potentials shifts.  

 

3.5. Limit of Detection and quantification 

The anthrax DNA detecting system showed consistent results to low concentrations of DNA. 

Different target anthrax DNA concentrations were tested to calculate the detection and quantitation 

limits.  Sensitivity of the system was found to be 10 pM. 

 

3.6. Specificity of the detecting system 

To assess the specificity of the detecting system, target anthrax DNA sequences with 1bp, 2bp, 

3bp mismatches from the original one, and a DNA random sequence containing no similar pair of 

bases were tested. The gold deposited electrode was subjected to the same immobilization and 

hybridization procedure and electrochemical parameters for the mismatches. The CV voltammograms 

of these mismatches showed no significant change in anodic peak current and potential after 

hybridization, which means that no hybridization event was detected. Figure 7 shows the peak-to-peak 

current shift after hybridization for all the mismatches and the actual target. No overlap is observed 

between the error bars for the actual target and any potential cross-reaction with other DNA sequences, 

which implies significantly different results at 99%.   

It is noticeable that 1bp mismatch shows a slight shift and the shift diminishes to nothing for 

the random sequence. It was also observed as the number of mismatched base pairs increased the shift 

became minimal. The Peak potential for the 1 bp-mismatched sequence gave a slight yet detectable 

signal; the voltage shifts for 2bp, 3bp and negative mismatches were not significant. Figure 8 shows 

that the mismatched bases gave very low potential shifts when compared to the target DNA sequence 

and yet significantly different to the target sequence (99% significance) 
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Figure 7. Error graph of hybridization peak current shifts with 1bp, 2bp, 3bp mismatches and random 

sequence (99% significance). 

 

 

 
 

Figure 8. Error graph of hybridization Peak potential shifts with 1bp, 2bp, 3bp mismatches and 

random sequence (99% significance). 

 

This could be explained by the theory that complementary DNA strands form a tightly packed 

duplex, and mismatched base pairs do not fit well into this tight binding site. Hence even though there 

is some binding between the probe and mismatched DNA, the mismatches weaken the binding and as 

the number of mismatched bps increase the peak current shift diminishes greatly. 

 

 

4. CONCLUSION 

A reliable electrochemical detection system for the bacterium Bacillus anthracis in liquid 

samples has been successfully demonstrated in this work. Gold deposited carbon screen-printed 
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electrodes effectively modified with a self-assembled monolayer of MCH have proved efficient for 

ssDNA-thiol probe anchoring. We further confirmed that controlling the concentration of MCH proves 

vital for better signal detection and influences probe immobilization and target hybridization. 

Consequently optimizing MCH and ssDNA-thiol concentrations is paramount; statistical analysis 

(DOE) was used to estimate an ideal value for attaining maximum peak current and potential shifts. 

DOE provided influence and significance of each factor (MCH and ssDNA-thiol concentration) and 

their effect on the response (peak current and peak potential) with agreeable r
2
 values of 100% and 

68.70% respectively. A concentration of 0.5mM for MCH and 1.0 μM for ssDNA-thiol probe was 

predicted as optimum. 

SPEs designed with the above said optimal conditions were capable of producing well-defined 

Cyclic Voltammograms upon MCH/ssDNA-thiol immobilization and target hybridization. The 

observed shift in peak current and potential were employed for detecting target DNA. The peak shifts 

were found to be always consistent and significant to identify even the smallest mismatches in target 

DNA sequence, this was ascertained by uncertainty analyses. Selectivity studies indicated the system 

detected 1bp, 2bp, 3bp mismatched DNA and random sequences accurately. The detection system is 

sensitive enough to detect DNA samples as low as 10 pM and identifying Bacillus anthracis DNA 

using peak current and peak potential shifts respectively.  

These results will also be beneficial to further develop and perfect detecting systems capable of 

detecting on scene samples efficiently. We also conclude, this system adaptable for detecting 

numerous other microbial threats, with refinement will be advantageous in many fields. 
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