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In the present work, the effect of temperature and relative humidity on the corrosion rate of zinc in 

field exposures for nearly one year or in laboratory corrosion environments was investigated by zinc-

graphite coupling type atmospheric corrosion monitor (ACM) sensor. During the field exposure, the 

temperature, relative humidity and corrosion rate were monitored continuously at the same time. The 

results showed that using the time of wetness (TOW) alone to estimate the corrosion rate of zinc had 

some limitations. To address this problem, ACM was also used in laboratory corrosion tests, which 

were performed in the chamber with controlled temperature and humidity. It was found that both 

temperature and relative humidity could affect the corrosion rate of zinc, and there was a coupling 

effect between the temperature and relative humidity on the corrosion rate. Based on the data from the 

laboratory corrosion tests, a new equation was proposed to describe the correlation of corrosion rate 

with temperature and relative humidity, which also considered the coupling effect between temperature 

and relative humidity. This equation better reflected the atmospheric corrosion rate of Zn during field 

exposures compared to the TOW.  
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1. INTRODUCTION 

Zinc (Zn) has been extensively used as coatings, paint pigments and sacrificial anodes to 

protect metals against corrosion because of its relatively low corrosion potential in the electrochemical 

series and low price [1-4]. Since many metallic materials and structures are exposed to atmospheric 

environments, the atmospheric corrosion of Zn has received considerable interest [1,2,5,6]. The 
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atmospheric corrosion is one of the most common degradation processes of metallic materials, which 

can course significant damage to infrastructures [1,7-15]. The atmospheric corrosion of metals is a 

complex process that involves the chemical, electrochemical, and physical processes in solid, liquid, 

and gas phases [16,17]. In contrast to the corrosion process happened in the bulk aqueous solution, the 

atmospheric corrosion generally occurs under a thin electrolyte layer on the metal surface and such 

layer can be formed in various conditions such as dew, rainfall, melting snow and water condensation 

in high humidity atmospheres [5,18-21]. 

The atmospheric corrosion of Zn has been extensively investigated in field exposures and in 

laboratory under controlled environments [2,22-25]. Field exposures have the benefits of reflecting the 

corrosion process in the real world. In order to guide the safe usage and predict the performance of 

metals in field exposures, it is rather important to investigate the relationship between the corrosion 

rate and the environmental factors such as relatively humidity (RH), wet-dry cycles and temperature. It 

has been generally accepted that the thin electrolyte layer on the metal surface plays an important role 

in the corrosion process, which is highly dependent on the environmental characteristics [1,3,26]. 

According to ISO 9223 [18], the period during which a metallic surface is covered by adsorptive 

and/or liquid film of electrolyte is defined as time of wetness (TOW), which determines the time of the 

electrochemical corrosion process and affects the mass transport during the electrochemical corrosion 

[26-28]. Although it has been widely reported that the TOW is strongly related with the initiation and 

progress of the atmospheric corrosion [26,27,29,30], the exact effect of environmental factors (e.g., 

RH and temperature) on the corrosion behavior and rate during field exposures is quite complicated 

[31-33]. Corvo et al. [33] observed that for temperatures higher than 25 °C the determination of TOW 

changed, and a significant diminution of the surface water layer took place when air temperature was 

over 25 °C. Mikhailov et al. [31] reported that the atmospheric corrosion rate increased with the 

increasing temperature in a range of lower temperatures below 10 °C while it decreased as the 

temperature increased in a range of higher temperatures above 10 °C. Morcillo et al. [32] found that 

the atmospheric corrosion of Zn could occur below 0 °C, and it was possible to measure the 

electrochemical activity on the metallic surface below the ice layer.  

To date, the dependence of the corrosion rate on the RH and temperature remains unclear. In 

addition, among various approaches for investigating the atmospheric corrosion, the use of 

Atmospheric Corrosion Monitor (ACM) has been proposed as an effective method to study the 

corrosivity of metals in field exposures due to several distinct advantages such as quantitative, direct 

and automatic measurement of the corrosion rate [5,34]. However, there have been no reports on 

corrosion monitoring for Zn in field exposures using ACM.  

In the present work, zinc-graphite coupling type ACM sensor was used to investigate the effect 

of temperature and relative humidity on the corrosion rate of Zn in field exposures for nearly one year 

and also in laboratory environments. During the atmospheric corrosion tests, the temperature, relative 

humidity and corrosion rate of Zn were monitored continuously by ACM at the same time. The 

coupling effect between the temperature and relative humidity on the corrosion rate of Zn was found. 

A new equation was proposed to describe the correlation of corrosion rate of Zn with temperature and 

relative humidity, and it could better reflect the atmospheric corrosion rate of Zn in field exposures 

compared to the TOW. 
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2. EXPERIMENTAL 

2.1. Features of ACMs 

Fig. 1 shows the schematic illustration of the Zn–Graphite coupling type ACM sensor 

developed by the Tianjin University–Liceram Joint Laboratory. The structure of the ACM sensor is in 

the sandwich form, and there is a porous insulating film (0.02 mm thick) between the tested Zn 

specimen and conductive graphite film. Because of the porous structure of the insulating film, when a 

thin water film is formed between Zn and graphite film due to the water condensation, rainfall and etc., 

a galvanic current passes between Zn and graphite. This galvanic current has been found to show a 

good relationship with the corrosion rate of metals [5,35]. Therefore, the corrosion process of Zn can 

be monitored by measuring the galvanic current. The fabricated ACM can also monitor the 

temperature and RH at the same time.  

 

 
 

Figure 1. (a) Zn-graphite ACM sensor detecting the galvanic current used in the present work, and (b) 

the schematic diagram of the ACM sensor. 

 

2.2. Field exposure test 

Zn ACMs were mounted on exposure racks at an angle of 45° to the horizontal at 24 test 

stations in Shandong Province, China (Fig. 2). During the field exposure period, the galvanic current, 

RH and temperature were monitored by the ACM. The data was collected by the ACM every 10 

minutes. Fig. 3 shows the photograph of the installed ACM for field exposure test in Jiaodong site.  
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Figure 2. Exposure sites in Shandong province, China. 

 

 
 

Figure 3. The photograph of the ACM in field exposure in Jiaodong site. 
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2.3. Laboratory corrosion test 

The Zn ACM was placed inside a chamber with controlled humidity or temperature, and the 

metal surface was at an angle of 45° to the horizontal. In the case of constant temperature tests, the 

temperature was set at as a constant value of 285, 300 and 308 K, and an alternating RH variation was 

subjected to the Zn ACM. For the constant temperature tests, the RH was set at as a constant value of 

53%, 84%, and 92%, respectively. During the laboratory corrosion test, the galvanic current, actual RH 

and temperature in the chamber were monitored by the ACM. 

 

 

 

3. RESULTS AND DISCUSSION 

3.1. Field exposure tests 

Fig. 4 shows the data of the temperature, RH, galvanic current, and charge quantity with time 

in field exposure test, which was measured in Shanxian site for one week. It is seen that the value of 

the temperature fluctuated remarkably between 293 and 311 K during day and night, and the RH value 

fluctuated between 28% and 94% with time. Correspondingly, the galvanic current varied with the 

changing temperature and RH. Previous studies found that the corrosion rate of metals has a good 

relationship with the galvanic current [5,22,36]. The charge quantity increased continuously with time 

as the corrosion process continued, indicating the increasing corrosion amount of Zn specimen with 

exposure time.  

 

 
Figure 4. The monitored data of the temperature, RH, galvanic current and charge quantity by ACM in 

Shanxian site. 
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In order to demonstrate the long-term atmospheric corrosion data, Fig. 5 shows the change of 

the average temperature, average RH, average galvanic current, and charge quantity with time in Jinan 

site for nearly one year. Since the values of temperature, RH and galvanic current changed drastically 

from day to night, the data of them were averaged from 10 days. The temperature decreased from 300 

to 271 K from Aug., 2012 to Dec., 2012. There is no obvious trend for the RH value and it was within 

the range between 30% and 82%. During the investigated exposure period, the highest galvanic current 

was 2.8×10
–6

 A, which was about two orders of magnitude higher than the lowest galvanic current. 

Generally, the change of the average galvanic current didn’t follow the change of the temperature and 

RH, although they showed similar trend in some cases (e.g., from 15 Dec. to 28 Dec., 2012). As the 

atmospheric corrosion process proceeded, the charge quantity increased continuously with time.  

 

 
 

Figure 5. The 10-day average data of the temperature, RH, galvanic current, and charge quantity for 

nearly one year in Jinan site. 

 

Since TOW has been widely used to describe the development of the corrosion process of 

metals, Fig. 6 shows the change of the charge quantity and TOW with time in Jinan site for nearly one 

year. The value of TOW increased continuously with time. The charge quantity also increased with 

time, and there was several sudden increase of the charge quantity in the field exposure from Dec., 

2012 to Mar., 2013. This feature was different with that of TOW curve. The above result suggests that 

using TOW to evaluate the corrosion content and rate has some limitations, which has also reported by 

the previous studies [16,21,34]. For example, Schindelholz et al. [28] pointed out that the inaccuracy 

of using TOW to evaluate the corrosion rate originated from a humidity threshold well above the 
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drying point of deposited aerosols and differences between surface and ambient RH. In an effort to 

solve this problem, laboratory corrosion tests was carried out in the present work. 

 

 

 
 

Figure 6. The charge quantity and TOW measured by ACM in Jinan site for nearly one year. 

 

3.2. Laboratory corrosion tests 

Fig. 7a–c show values of the galvanic current, temperature and RH measured by the Zn ACM 

in the test chamber, and the temperature was set at as a constant value of 285, 300 and 308 K, 

respectively. The tested Zn specimen in the chamber was subjected to an alternating RH variation. It is 

seen that the corrosion density was very sensitive to the change of the RH, and it almost changed 

instantaneously with the variation of the RH. Generally, for all the three investigated temperatures, the 

galvanic current increased with the increasing RH value. Many studies found that the RH played a 

critical role in the corrosion rate of metals, and the corrosion rate generally increased with the 

increasing RH [3,15,37-39].  
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Figure 7. The monitored galvanic current, temperature and RH by Zn ACM in the test chamber, with 

the temperature set as constant value of (a) 285 K, (b) 300 K, and (c) 308 K, respectively. 

 

Fig. 8a–c show values of the galvanic current, temperature and RH measured by the Zn ACM 

in the test chamber, and the RH was set at as a constant value of 53%, 84%, and 92%, respectively. To 

further illustrate the RH effect on the galvanic current, a step-increase temperature up to 308 K was 

applied on the investigated Zn specimen. In this case, although the RH value was set at a constant 

value, the actual RH value (monitored by the ACM) could be changed rapidly during the initial stage 

of the temperature increase. Again, the value of the galvanic current changed rapidly with the change 

of the RH, and the galvanic current was raised as the RH increased. 

 

 
 

Figure 8. The monitored galvanic current, temperature and RH by Zn ACM in the test chamber, with 

the RH set as constant value of (a) 53%, (b) 84%, and (c) 92%, respectively. 

 

To clearly illustrate the effect of temperature and RH on the galvanic current, Fig. 9a shows the 

relationship between the galvanic current and RH under different temperatures, and the data was 

obtained from Fig. 7. It is seen that the logarithm of the galvanic current (i) was in linear relationship 

with the RH value:  

                              (1) 

Fig. 9b shows the relationship between the galvanic current and temperature under different 

RH values, and the data was obtained from Fig. 8. Similarly, the logarithm of the galvanic current was 

in linear relationship with the temperature:  

                               (2) 
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Table 1 shows the fitted value of slope b and d in equation (1) and (2), respectively. The value 

of slope b increased with the increasing temperature and that of slope d increased with the increasing 

RH, indicating that the temperature and RH had a coupling effect on galvanic current (i.e., corrosion 

rate). Although previous work found that the increasing temperature and RH could enhance the 

corrosion rate, the coupling effect between them has not been considered [3,15,37,38]. Considering the 

coupling effect between the temperature and RH, equations (1) and (2) can be written as equation (3) 

and (4), respectively:  

                      (3) 

                    (4) 

From equations (3) and (4), the relationship between the galvanic current, temperature and RH 

can be finally achieved as:  

                     (5) 

Based on the data fit in Fig. 9, the value of the constants in equation (5) was obtained and can 

be written as: 

        (6) 

 

 
 

Figure 9. (a) Relationship and the linear fit between the galvanic current and RH under different 

temperatures, (b) relationship and the linear fit between the galvanic current and temperature 

under different RH 

 

Table 1. The fitted results of the slope in equation (1) and (2)  

 

Temperature 

(K) 

Slope b in equation (1) RH (%) Slope d in equation (2) 

285 0.0541 53 0.0170 

300 0.0557 84 0.0223 

308 0.0594 92 0.0281 
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3.3. Comparison between the simulated and actual data.  

By substituting the T and RH in equation (6) with the actual values measured by ACM in the 

Shanxian site (Fig. 4), the simulated value of the galvanic current was obtained and compared with that 

monitored by ACM, as shown in Fig. 10. The simulated galvanic current agreed well with the actual 

galvanic current.  

Fig. 11 shows compared the charge quantity of the monitored data by ACM (Fig. 6) and 

simulated data during nearly one-year field exposure in Jinan site. Compared to the TOW curve, the 

curve of the simulated charge quantity was closer to the charge quantity obtained by ACM. For 

example, from Dec., 2012 to Feb., 2013, the simulated charge quantity matched quite well with the 

monitored one whereas TOW failed to reflect the slow increase of the charge quantity from Nov. to 

Dec., 2012 and the quick increase of the charge quantity from Dec., 2012 to Feb., 2013. This is 

because that our model considered the combined effect of temperature and RH on the corrosion rate, 

and the corrosion in low temperatures (i.e., in winter season) was taken into account by our model. 

 

 
Figure 10. The simulated galvanic current and the actual galvanic current obtained by ACM in field 

exposure in the Shanxian site. 

 

This suggested that the model developed in the present work was more accurate to describe the 

development of corrosion process of Zn compared to TOW. It was also noted that in some cases, for 

example, from Mar. to May., 2013, both TOW and our model couldn’t reflect well the corrosion 

process of Zn. This might be attributed to the reason that the effect of rain [26], snow, and pollutants 

[40-43] were not taken into account in the present work. Further work should be carried out to address 

this problem.  
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Figure 11. Comparison between the charge quantity of the monitored data by ACM and simulated data 

obtained in Jinan site. 

 

 

 

4. CONCLUSIONS 

The effect of temperature and relative humidity on the atmospheric corrosion rate of zinc in 

field exposures for nearly one year or in laboratory corrosion environments was investigated by zinc-

graphite type ACM sensor. The corrosion rate increased with the temperature (from 285 to 308 K) and 

RH (from 53% to 92%), and the RH had a larger influence on the corrosion rate compared to the 

temperature. Furthermore, the temperature and RH had a coupling effect on the corrosion rate of Zn. 

Using the time of wetness (TOW) alone to estimate the corrosion rate of zinc had some limitations. A 

new equation was proposed to describe the correlation of corrosion rate with temperature and RH, 

which also considered the coupling effect between temperature and RH. Compared to the TOW, the 

new equation developed in the present work better reflected the atmospheric corrosion rate of Zn 

during field exposures.  
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