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Zeta potential is crucial for practical applications in electrochemistry. However, the precise 

deterimination of zeta potential of decomposed peat is complex and has high requirements to related 

instructments. Previous study shows that zeta potential of decomposed peat can be predicted by back-

propagation (BP) neural network. However, it lacks available comparisons and neglects the importance 

of the decomposed stages of peat and the required training times. Here, to extend this research, we 

propose a series of novel machine learning techniques including support vector machine (SVM) and 

artificial neural networks (ANNs) to predict the zeta potential of decomposed peat. Four indicators 

including hydrated radius (nm), cation valence, concentration (mol/L) and pH are set as independent 

variables while zeta potential (mV) is set as the dependent variable. The SVM, general regression 

neural network (GRNN) and multilayer feed-forward neural networks (MLFNs) are developed in 

different decomposed stages, including the slightly decomposed peat, the highly decomposed peat and 

all decomposed peat. Results show that separating the models based on the decomposed stages have 

better prediction results than taking all decomposed peat in one model. During our studies, the SVM is 

the best model for the prediction to the slightly decomposed peat (RMS error: 2.37, training time: 1s), 

while the GRNN is the best model for the prediction to the highly decomposed peat (RMS error: 2.20, 

training time: 1s).  
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1. INTRODUCTION 

In the field of electrochemistry, zeta potential, the electric potential in the interfacial double 

layer at the location of the slipping plane, is the potential difference between the stationary layer of 

fluid attached to the dispersed particle and the dispersion medium [1-3]. Studies show that zeta 

potential is mainly caused by the net electrical charge contained in the region bounded by the slipping 

plane and influenced by the location of it [4-8]. With the development of electrochemical technology, 

there are currently several determination methods for zeta potentials, including electro-osmosis, 

electrophoresis, streaming potentiometry and ultrasonic method [1].  

Zeta potential is a crucial indicator of the stability of colloidal dispersions [9-14]. For the 

decomposed peat, zeta potential also plays a crucial role in related studies. However, in practical 

applications, the exact determination of zeta potential of decomposed peat is complex and requires a 

series of operations and necessary electrochemical instruments, which wastes too much time and 

manpower. To reduce experimental works, previous studies used back-propagation (BP) neural 

network to predict the zeta potential of decomposed peat in the presence of different cations [15]. 

However, this study only discussed one possible model for the prediction, which neglected necessary 

comparisons with different artificial neural networks (ANNs) and other powerful machine learning 

techniques. Also, the decomposed stages and the effects of number of neurons to the required training 

time were also neglected. Therefore, to improve the prediction technique, it is necessary for us to find 

out a better model that takes all these neglected items into consideration, including i) prediction effects 

of different models; ii) errors of testing and required training times of the models and iii) numbers of 

neurons (numbers of nodes) in the hidden layers of ANNs. Here, to find out a better model for the 

prediction of zeta potential of decomposed peat, we use novel machine learning techniques including 

novel ANNs and support vector machine (SVM) to develop a series of prediction models for 

decomposed peat in the presence of different cations. Two stages of decomposed peats defined by the 

classification method [15] including the slightly and the highly decomposed peats are taken into 

different considerations. Selections of results are based on the comprehensive performances of 

different models, including the change regulation of results of ANNs with different nodes. 

Comparisons are made among different models according to the testing results, which contain the root 

mean square error (RMS error), training time and prediction accuracy.  

 

2. MATERIALS AND METHODS 

2.1 Introduction to Experiments 

 

According to previous research [15], the determination of zeta potential of decomposed peat is 

highly related to four indicators that can be obtained by easy measuring process, including hydrated 

radius (nm), cation valence, concentration (mol/L) and pH. To develop a series of machine learning 

models, in our study, these four indicators are set as independent variables, while zeta potential (mV) 

is set as the dependent variable. Experimental data is provided by Asadi's research, including 65 data 

groups of the slightly decomposed peat and 66 data groups of the highly decomposed peat [15]. 
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Statistical experimental results of the determination of zeta potential of decomposed peat are shown in 

Table 1.  

 

Table 1. Statistical experimental results of the determination of zeta potential of decomposed peat 

(data extracted from Asadi's research [15] ).  

 
Statistical item Hydrated 

radius (nm) 

Cation valence Concentration 

(mol/L) 

pH Zeta potential (mV) 

Minimum 0.33 1 0.0001 2.790 -32.37 

Maximum 0.48 3 0.0010 11.77 -1.500 

Average 0.39 N/A 0.0034 7.260 -15.69 

 

2.2 Support Vector Machine (SVM) 

 

SVM is a powerful machine learning technique mainly on the basis of statistical learning 

theory [16]. Based on the limited information of samples between the complexity and learning ability 

of models, this theory has an outstanding ability of global optimization for improving generalization. 

In terms of linear separable binary classification, finding the optimal hyperplane, a plane that separates 

all samples with the maximum margin, is the main principle of SVM [17, 18]. The plane not only helps 

improve the predictive ability of the model, but also helps reduce the error which occurs occasionally 

when classifying. Figure 1 [19] shows the optimal hyperplane, with “+” representing the samples of 

type 1 and “−” representing the samples of type −1. 

 

 

Figure 1. Support vectors determine the position of the optimal hyperplane [19]. 
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Figure 2 illustrates the main structure of a typical SVM [19]. The letter “K” represents kernels 

[20]. As it can be seen from Figure 2, it is a small subset extracted from the training data by relevant 

algorithm that consists of the SVM. For applications, choosing suitable kernels and appropriate 

parameters is of great importance to get a good prediction accuracy. Nevertheless, there is still no 

existing international standard for users to choose these parameters. Under most circumstances, the 

comparison of experimental results, the experiences from copious calculating, and the use of cross 

validation that is available in software package are able to help us solve this problem in a relatively 

reliable way [19,21,22]. 

 

 

Figure 2. Main structure of a support vector machine [19]. 

 

2.3 Artificial Neural Networks (ANNs) 

 

ANNs [23-25] are statistical learning algorithms with the functions of estimation and 

approximation based on a large number of inputs. ANNs are inspired from the biological neural 

networks especially the brain. They are different from networks with only one or two layers of single 

direction logic, using algorithms in control determining and function organizing. Interconnected 

artificial neural networks usually consist of neurons that can calculate values from inputs and adapt to 

different situations. Therefore, ANNs are capable of machine learning and pattern recognition. Due to 

the characters mentioned above, ANNs have gained wide popularity in inferring a function from 

observation especially when the data or the task is too complicated to be dealt with human brains. 

Figure 3 presents a schematic structure of a typical ANN for the prediction of zeta potential, which 

contains the input layer, hidden layer and output layer. The four independent variables are considered 

as neurons in the input layer in this study, including hydrated radius (nm), cation valence, 

concentration (mol/L) and pH, while the dependent variable, the zeta potential is considered as the 

only output neuron in the output layer. 
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Figure 3. Schematic structure of an ANN for the prediction of zeta potential. 

 

3. RESULTS AND DISCUSSION 

 

3.1 Model Development 

 

 Here, we use novel machine learning techniques to analyze the experimental results provided 

by previous research [15]. 80% data group was set as the training set, while 20% data group was set as 

the testing set. The SVM was developed by the Matlab software. The ANNs were constructed by the 

NeuralTools
®
 software (trial version, Palisade Corporation, NY, USA). General regression neural 

network (GRNN) [26-28] and multilayer feed-forward neural network (MLFN) [29-31] were chosen as 

the algorithms of ANNs.  

 The RMS error, required training time and prediction accuracy (under the tolerance of 30%) 

were used as indicators to measure the performances of the SVM and ANNs. The number of nodes of 

MLFNs were set from 2 to 25, from which we could find out the change regulation of the MLFNs 

when dealing with the development processes. Three groups of models were developed respectively, 

including the slightly decomposed peat (Table 2), the highly decomposed peat (Table 3) and all 

decomposed peat (which contains both slightly and highly decomposed peats, Table 4).  

 

Table 2. Machine learning models for the prediction of zeta potential of the slightly decomposed peat. 

 

Model RMS 

Error 

Training 

Time 
Prediction 

Accuracy 

SVM 2.37 0:00:01 100% 

GRNN 3.23 0:00:01 84.6% 

MLFN: 2 Nodes 2.64 0:00:39 92.3% 

MLFN: 3 Nodes 2.40 0:00:44 100% 

MLFN: 4 Nodes 3.14 0:00:46 84.6% 

MLFN: 5 Nodes 2.43 0:00:56 92.3% 
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MLFN: 6 Nodes 3.09 0:01:04 84.6% 

MLFN: 7 Nodes 2.83 0:01:09 92.3% 

MLFN: 8 Nodes 3.43 0:01:22 84.6% 

MLFN: 9 Nodes 5.16 0:01:39 69.2% 

MLFN: 10 Nodes 4.61 0:01:55 76.9% 

MLFN:11 Nodes 6.29 0:01:51 69.2% 

MLFN: 12 Nodes 5.96 0:02:04 69.2% 

MLFN:13 Nodes 5.81 0:02:27 69.2% 

MLFN: 14 Nodes 2.93 0:02:40 84.6% 

MLFN: 15 Nodes 3.45 0:03:03 84.6% 

MLFN: 16 Nodes 8.72 0:03:26 61.5% 

MLFN: 17 Nodes 5.03 0:03:35 76.9% 

MLFN: 18 Nodes 4.33 0:03:34 76.9% 

MLFN: 19 Nodes 3.15 0:03:56 84.6% 

MLFN: 20 Nodes 6.33 0:04:09 69.2% 

MLFN: 21 Nodes 4.21 0:04:54 76.9% 

MLFN: 22 Nodes 3.54 0:05:19 84.6% 

MLFN: 23 Nodes 4.43 0:05:34 76.9% 

MLFN: 24 Nodes 3.95 0:06:10 76.9% 

MLFN: 25 Nodes 3.25 0:06:30 84.6% 

 

 Table 2 shows that the SVM and MLFN with 3 nodes have the lowest RMS errors (2.37 and 

2.40 respectively) and the highest prediction accuracies (both 100%). The SVM and GRNN have the 

shortest training times (both 1s). In sum, the SVM is the most suitable model for the prediction of zeta 

potential of the slightly decomposed peat because of its low RMS error, high prediction accuracy and 

short required training time. 

 

Table 3. Machine learning models for the prediction of zeta potential of the highly decomposed peat. 

 

Model RMS 

Error 

Training 

Time 
Prediction 

Accuracy 

SVM 2.71 0:00:01 92.3% 

GRNN 2.20 0:00:01 100% 

MLFN: 2 Nodes 3.16 0:00:40 84.6% 

MLFN: 3 Nodes 2.91 0:00:42 92.3% 

MLFN: 4 Nodes 2.85 0:00:52 92.3% 

MLFN: 5 Nodes 4.77 0:00:58 76.9% 

MLFN: 6 Nodes 2.57 0:01:06 92.3% 

MLFN: 7 Nodes 3.48 0:01:08 84.6% 

MLFN: 8 Nodes 2.22 0:01:29 100% 

MLFN: 9 Nodes 3.29 0:01:42 84.6% 

MLFN: 10 Nodes 4.24 0:01:50 76.9% 

MLFN:11 Nodes 6.38 0:01:59 69.2% 

MLFN: 12 Nodes 3.08 0:02:27 84.6% 

MLFN:13 Nodes 4.83 0:02:38 76.9% 
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MLFN: 14 Nodes 4.65 0:02:47 76.9% 

MLFN: 15 Nodes 3.92 0:03:01 84.6% 

MLFN: 16 Nodes 4.90 0:03:13 76.9% 

MLFN: 17 Nodes 4.75 0:03:54 76.9% 

MLFN: 18 Nodes 5.53 0:04:10 69.2% 

MLFN: 19 Nodes 6.25 0:05:08 69.2% 

MLFN: 20 Nodes 4.71 0:05:42 76.9% 

MLFN: 21 Nodes 3.77 0:05:23 84.6% 

MLFN: 22 Nodes 3.39 0:06:38 84.6% 

MLFN: 23 Nodes 3.73 0:06:33 84.6% 

MLFN: 24 Nodes 5.23 0:07:26 69.2% 

MLFN: 25 Nodes 10.19 0:09:24 0.00% 

 

 Table 3 shows that the GRNN and MLFN with 8 nodes have the lowest RMS errors (2.20 and 

2.22 respectively) and the highest prediction accuracies (both 100%). However, the MLFN with 8 

nodes required a much longer training time than that of the GRNN. Therefore, the GRNN is 

considered as the most suitable model for the prediction of zeta potential of the highly decomposed 

peat.  

 

Table 4. Machine learning models for the prediction of zeta potential of all (both slightly and highly) 

decomposed peats. 

 

Model RMS 

Error 

Training 

Time 
Prediction 

Accuracy 

SVM 3.02 0:00:01 92.3% 

GRNN 3.38 0:00:01 92.3% 

MLFN: 2 Nodes 3.15 0:01:12 92.3% 

MLFN: 3 Nodes 3.45 0:01:16 92.3% 

MLFN: 4 Nodes 3.54 0:01:17 92.3% 

MLFN: 5 Nodes 4.43 0:01:30 84.6% 

MLFN: 6 Nodes 3.31 0:01:53 92.3% 

MLFN: 7 Nodes 4.97 0:02:02 84.6% 

MLFN: 8 Nodes 5.63 0:02:19 76.9% 

MLFN: 9 Nodes 4.14 0:02:26 84.6% 

MLFN: 10 Nodes 5.69 0:02:39 76.9% 

MLFN:11 Nodes 4.14 0:02:45 84.6% 

MLFN: 12 Nodes 5.69 0:02:57 76.9% 

MLFN:13 Nodes 4.68 0:03:10 84.6% 

MLFN: 14 Nodes 4.65 0:03:28 84.6% 

MLFN: 15 Nodes 5.78 0:03:40 76.9% 

MLFN: 16 Nodes 6.03 0:03:54 69.2% 

MLFN: 17 Nodes 7.88 0:04:11 30.1% 

MLFN: 18 Nodes 9.30 0:04:42 30.1% 

MLFN: 19 Nodes 8.02 0:04:38 30.1% 

MLFN: 20 Nodes 7.17 0:04:42 30.1% 

MLFN: 21 Nodes 14.05 0:04:56 0.00% 
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MLFN: 22 Nodes 14.54 0:06:12 0.00% 

MLFN: 23 Nodes 10.94 0:06:23 0.00% 

MLFN: 24 Nodes 15.70 0:06:03 0.00% 

MLFN: 25 Nodes 20.99 0:05:41 0.00% 

 

Table 4 shows that the SVM has the lowest RMS error (3.02) and the shortest required training 

time (1s). However, it can be apparently seen that results presented in Tables 2 and 3 are generally 

better than those in Table 4, with generally lower RMS errors and higher prediction accuracies. This 

phenomenon indicates that the best prediction results may appear when prediction models for the 

slightly and the highly decomposed peats are developed respectively. If the two stages of decomposed 

peats are used for making a united model (like the models presented in Table 4), the learning process 

may be confused because the zeta potentials of the two stages of decomposed peats may have different 

relationships with the independent variables we chose.  

 

 
                                         (a)                                                                             (b) 

 
(c) 

Figure 4. Testing results of three zeta potential prediction models. a) SVM for the slightly 

decomposed peat; b) GRNN for the highly decomposed peat; c) SVM for all decomposed peat. 

 

To make the discussion more intuitionistic, Figure 4 is illustrated to show the testing results of 

the best models in Tables 2, 3 and 4, respectively. It shows that the predicted values of the SVM for 

the slightly decomposed peat [Figure 4 (a)] and the GRNN for the highly decomposed peat [Figure 4 
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(b)] are relatively closer to their actual values than those of the SVM for all decomposed peat [Figure 4 

(c)]. Therefore, the SVM is shown as the best model for the prediction of zeta potential for the slightly 

decomposed peat, while the GRNN is shown as the best model for that of the highly decomposed peat.  

 

3.2 Robustness Analysis for ANNs 

 

According to the principles of the SVM, it has an excellent robustness, which means that it has 

a good reproducibility. However, the randomness in the initial process is one of the characteristics of 

ANNs, which leads to different results in repeated experiments. Now that the results presented in this 

article has shown that the GRNN is the best for the highly decomposed peat, the reproducibility of the 

GRNN still cannot be neglected. To test the robustness of the GRNN in predicting the zeta potential of 

the highly decomposed peat, 150 repeated experiments were done (Figure 5). They show that although 

there exists fluctuations, the changes of RMS errors are stable, indicating that the GRNN is robust in 

predicting the zeta potential of the highly decomposed peat using the provided data. Therefore, the 

GRNN is proved to be available in practical applications.  

 
Figure 5. Repeated experimental results of the GRNN in predicting the zeta potential of the highly 

decomposed peat. 

 

 In our study, the SVM and ANNs are constructed by different softwares. Although the MLFNs 

are generally not as precise than the SVM and GRNN in this research, it is also clear that it can be a 

suitable alternative model for the prediction without a Matlab software. However, RMS errors and 

required training times of MLFNs are significantly different with different nodes. To show the change 

regulation of the MLFNs, here, we present the results of MLFNs of Tables 2, 3 and 4 in a three-

dimensional way (Figure 6). 

 



Int. J. Electrochem. Sci., Vol. 10, 2015 

  

6053 

 
(a) 

 
(b) 

 
(c) 

Figure 6. Change regulation of MLFNs in different number of nodes. Prediction of zeta potentials for 

(a) the slightly decomposed peat, (b) the highly decomposed peat and (c) all decomposed peat. 
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 Figure 6 shows that in all the three prediction duties, RMS errors of the MLFNs are 

comparatively stable in low nodes and the required training times generally increase with the increase 

of the number of nodes. Meanwhile, the RMS errors in high number of nodes are not stable enough. 

Therefore, if we have to use an MLFN as an alternative, the MLFNs with low number of nodes can be 

considered.  

 

3.3 Comparisons with Previous Studies 

 To make comprehensive comparisons between our models and previous approaches, the 

discussion should be divided into two parts. The first part is the comparisons between machine 

learning techniques and the conventional measurements for zeta potentials. The second part is the 

comparisons among different machine learning techniques for zeta potentials. 

 So far, there are various conventional approaches for measuring zeta potentials. In many 

different cases, some of these approaches have been widely-used in relevant fields, including the use of 

Smoluchowski equation [32], the use of the relationship between measured electrical signals and zeta 

potentials [33,34], the use of effects of ions to the zeta potentials [35] and electrophoresis technique 

[36]. However, all these approaches require a large number of experimental and calculation works, 

which have high requirements to experimental instruments and meanwhile, waste too much time and 

manpower. In contrast, based on the "learned" experimental data, machine learning techniques have 

comparatively better performances to predict the zeta potential in our cases due to its powerful 

capacity of finding out the relationship between independent and dependent variables. When the 

training process of a model is completed, users can only input the values of independent variables 

obtained by simple determination processes, and then the precise predicted results can be outputted 

automatically and quickly. Here, we use the decomposed peat as a typical example, showing that 

machine learning techniques have strong potentials for practical applications to measure zeta potentials. 

Also, with the development of computer science, machine learning models now can be developed 

using user-friendly softwares or packages [19,21,22,37,38]. Based on the reasons above, machine 

learning, our novel techniques for measuring zeta potentials, have significant advantages when being 

compared with other conventional popular approaches. 

 In terms of machine learning techniques, according to previous studies [15], the BP neural 

network with 19 nodes in its hidden layer was also useful for the prediction of zeta potential for 

decomposed peat, with an RMS error 2.50. However, on the one hand, their study didn't notice that the 

slightly and the highly decomposed peats can be separated and be predicted in different models 

respectively, which may obtain better prediction results. In fact, we can note that in the non-linear 

fitting process, the fitting results can be easily disturbed because the experimental conditions and the 

independent variables for the slightly and the highly decomposed peats are the same, which is also a 

reason why results presented in Table 4 are not as good as those presented in Tables 2 and 3. On the 

other hand, the BP neural network with 19 nodes in its hidden layer requires a comparatively high 

required training time due to the principles of an ANN, which is difficult for users to develop the 

model. Our study successfully shows that separating the peats into two decomposed stages and taking 
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the required training times into consideration can help us obtain better machine learning models for the 

prediction of the zeta potential. In addition, the use of the SVM also shows that as a novel and strong 

machine learning tool, SVM has great potential applications in electrochemical field. Further related 

studies should not only discuss the availability of ANNs, but also introduce the results of SVM when 

predicting. Only by making comparisons among ANNs, SVM and other prediction models, can we 

define the most suitable models in related prediction studies. 

 

4. CONCLUSION 

 

 Here, we successfully show that better machine learning prediction models of zeta potential of 

decomposed peat can be obtained by separating the decomposed peat into two stages, the slightly and 

the highly decomposed peats. Models are proposed respectively to find out the best prediction results 

for zeta potentials of the two stages. Results show that the SVM is the most suitable model for the 

prediction of zeta potential of the slightly decomposed peat while the GRNN is the most suitable 

model for the prediction of zeta potential of the highly decomposed peat due to their low RMS errors, 

high prediction accuracies and short training times.  
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