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[Purpose] The security guaranteeing method for the lithium-ion battery is studied and a novel state of 

charge (SOC) estimation method is proposed based on the Kalman filtering (KF) thought, aiming to 

guarantee its safety in the power supply application of electric vehicles (EVs). In this study, there are 

several parts that have been studied to realize the protection of the lithium-ion battery during its whole 

life period. Firstly, the core parameters for the working state estimation of the lithium-ion battery is 

studied and the methods for the state of charge estimation are analyzed. Secondly, the working state of 

the lithium-ion battery is estimated by the integrated application of the state of charge estimation 

methods. Then, the estimation model is designed and realized based on the estimation principle. At 

last, this method and model is proved by the experimental analysis. In the experiments, the main 

operating temperature varies between 26.84 ℃ and 33.16 ℃, with an average value of 30 ℃. The 

average value of the Coulomb efficiency is about 0.97 and all above 0.95. The average value of the 

battery capacity is approximately 45.08Ah. When the SOC actual initial value is 0.8 and the test initial 

forecast value is 0.6, the estimation can track the actual value in less than 5 seconds and has high 

accuracy. The error covariance value is smaller than 3.5×10
-6

 and decreases rapidly as time goes. This 

study can achieve the working state estimation of the lithium-ion battery, which can guarantee its 

safety effectively in the power supply applications. 
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1. INTRODUCTION 

Because of the oil and energy shortages and the air pollution, the development of energy-saving 

electric vehicles (EVs) has become one of the major energy supply development trends in the 

automotive industry [1-3]. 

Energy is an important material foundation for the economic growth and social development. 

And in the application course of energy, it has caused environmental pollution, climate change and 

other serious problems [4-5]. Whether the energy consumption and emissions in the transport sector 

and other issues can be effectively resolved will directly affect our social development. Aiming to 

solve these problems, many countries are promoting the development of EVs industry vigorously [6]. 

The batteries which is used as the main power source of EVs are required to have high specific energy, 

high specific power and high charging and discharging efficiency [7-12]. Lithium-ion batteries (LIBs), 

because of its high energy density, high voltage, long cycle life, safety, reliability and other good 

characteristic features, are becoming one of the major power sources for EVs [13]. 

The state of charge (SOC) of the LIBs is an important core parameter in the application of 

batteries, requiring the accurate measurement of the equation parameters in the development of EVs, 

which is becoming a very critical issue [14-18]. Only with accurate measurement equations of the 

SOC, it is able to manage the battery energy effectively to prevent it from over-charging or over-

discharging risks [19]. It can provide the necessary data basis for other energy related system programs 

as well. However, the present estimating technology is not capable for the accurate real-time 

measurement of SOC [20-23]. As a result, we can only think of other approaches to improve the SOC 

estimating accuracy. In the process of the SOC value estimation, we must consider the impact of 

various factors in the LIBs working process, using reasonable equivalent circuit model of the LIBs 

[24-32]. The appropriate estimation algorithms are used to improve the accuracy of the SOC 

estimation. 

The batteries and battery management systems (BMS) are the key components of EVs [33-39]. 

The SOC value, which marks the power remaining of the batteries, is also the core parameter of the 

BMS. It is a reflection of the operational status of the main parameter, providing a basis for the vehicle 

control strategy judgment and management. And the accurate estimation and management of SOC can 

improve the battery sate of life (SOL) and the vehicle application performance. 

 

 

 

2. MATHEMATICAL MODEL ANALYSIS 

This part is organized as follows. After a brief review of the SOC definition, the battery impact 

factor analysis and its demonstration that influence lithium battery pack SOC value estimation directly 

are covered. These are the core parameters in the SOC estimation process. Next, the techniques and 

their realization methods for accurate SOC estimation of the LIBs are described. Then, the Kalman 

filtering (KF) principle is studied, including both of the state equation study and the measurement 

equation study which are the core parameters in the KF estimation principle. 
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2.1. SOC definition 

The battery SOC is used to reflect the status of the battery remaining capacity. The SOC value 

cannot be obtained directly from the direct detection of the battery parameters (especially for the real-

time working state monitoring), but only by measuring the outer characteristic parameters of the 

battery packs and estimating indirectly. It is defined on the ratio value of the residual capacity and the 

representing rated capacity as shown in Eq.1. 

100%c

I

Q
SOC

C
                                                                                     (1) 

Where, cQ  is the remaining capacity of the battery and IC  is the rated capacity, in which the 

battery discharges at the constant current I  and gains its capacity by multiplying current with the 

discharging time in hours.  

The SOC is defined as the ratio between the saved energy in a battery and the whole energy 

that could be saved in it by Shahriari et al [22] which verify this definition. Because the capacity of 

LIBs varies along with the discharging current greatly, it is necessary to signal the discharging current 

when the capacity value is used. 

In the actual EVs application, the battery SOC estimation formula to define the working sate is 

quite complicated. The reason is that, in the battery SOC estimation process, it is necessary to fully 

consider the current, voltage, self-recovery, temperature, charging or discharging rate, cycle numbers, 

aging degree and other factors which have great impacts on the battery SOC estimation. 

 

2.2. Battery impact factor analysis and demonstration 

In the SOC estimation process of LIBs in the EVs application, the SOC value of the battery is 

related to the discharging current, monomer temperature, battery remaining life, self-discharging rate 

and other factors. The number of recycling is especially exhibiting a high non-linear degree, which 

brings a lot of difficulties to the accurate SOC value estimation. 

 

2.2.1. Battery temperature  

The battery temperature influences a lot on the battery capacity, and the battery discharging 

capacity at the time of high-temperature significantly greater than at the time of low-temperature.  It 

can be analyzed by the electrochemical point of view as shown below. The internal battery undergoes 

the redox reaction in the discharging process, and the temperature will affect the battery power and 

active substance utilization, which affect the conversion speed of the chemical reaction, thereby 

affecting the battery performance. C.A.A. Juan et al studied the model training data cover operation 

from 100% SOC to 0% SOC and back up to 100% SOC in Fig. 4 and Fig. 5 considering the 

temperature variation [37], in which we can see the temperature influence on its SOC value estimation. 

The working state of the LIBs will be affected by the temperature of the continuous working 

time, working state and other factors in the inner battery monomers. In general, the capacity of LIBs 

will always rise along with the increase of the battery temperature. When the temperature is low, the 
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electrochemical reaction will be inhibited, the actual usable capacity of the battery will be reduced, and 

the energy utilization efficiency will decline, as a result, the maximum allowable discharging current is 

reduced. When the temperature rises, the actual battery capacity will increase, but when the 

temperature is too high, the battery capacity and charging-discharging efficiency will decline as well. 

Therefore, the actual capacity of the lithium-ion battery will experience a non-linear change along with 

the variety of the operating temperature. Therefore, the operating temperature of the factors cannot be 

ignored for the LIBs SOC estimation. 

 

2.2.2. Charging-discharging rate  

The discharging currents in the operating process inevitably exhibit a considerable nonlinearity. 

The LIB electricity release varies at different discharging currents. When the LIB discharges with a 

large discharging current, the total power release of the battery is quite small. While with a smaller 

discharging current, the total current release will increase. Therefore, in the SOC estimation process, 

we must consider the discharging current or current rate as an important factor. 

 

2.2.3. Self-discharge 

During the storage period of the battery, due to the impurities inside the battery, the battery 

positive and negative electrode active material is gradually consumed, resulting in the loss of battery 

capacity. This phenomenon is called self-discharge of the battery. The higher temperature and 

humidity will accelerate the battery self-discharge reaction. After a period of time that the battery is 

allowed to stand, the battery power is stabilized. However, if after a longer standing, the battery will 

slowly lose power, namely the phenomenon of self-discharge. Because KF algorithm is used in this 

study and the algorithm itself has a self-correcting function, this factor can be ignored. 

 

2.2.4. Battery Life 

The charging-discharging cycle means undergoing a whole battery charging and discharging 

process. Under certain discharging conditions prior to the specified battery capacity, the battery can 

withstand the number of cycles which is called cycle life. With the reduction of the battery life, the 

battery capacity will be reduced accordingly, which is related to the remaining discharging capacity 

directly. When the remaining battery power is low, the Coulomb effect will reduce. Therefore, the 

battery life also affects the SOC estimation for LIBs. 

 

2.3. SOC estimation Methods 

Since the produce of LIBs power, a variety of SOC estimation algorithms have emerged and 

gradually been corrected improvably. At present, the main methods to estimate the SOC value of the 

batteries are discharging experimental method, Ah (Ampere-hours) law method, OCV (open circuit 
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voltage) method, linear model method, resistance reckon method, KF method, neural network method 

and so on. 

 

2.3.1. Discharging experimental method 

In the discharging experimental method estimation process, the constant current discharging 

experiments are done for a sustaining discharge, in which the release capacity of electricity is obtained 

by multiplying the discharging current with time. This method is more accurate compared with other 

SOC estimating methods, but this charging and discharging test need too much experimental time, 

calculating this method cannot be used in the working environment of the LIBs. It is commonly used 

in the offline calibration of the battery capacity. 

 

2.3.2. Ah estimation method 

Ah method for SOC estimation is one of the most commonly used methods for estimating the 

SOC value and is the theoretical basis of other commonly used methods. The principle is that the 

battery is calculated by using the cumulative release of electricity in a certain time to estimate the SOC 

value with the time parameter t . The SOC calculation process is shown in Eq.2. 

 0
0

1
( )

t

n

SOC t SOC I d
Q

                                                                              (2) 

Wherein, 
0SOC  is the initial residual capacity; 

nQ  is the battery rated capacity;  I   is current for 

  time charging and discharging process, the value of which is positive when doing discharging 

maintenance and negative in the charging maintenance process;   is the Coulomb effect. 

As we can know from this SOC value estimating principle, it is quite a simple method to 

calculate the SOC value by using the Ah estimation method, but due to the imprecision of the current 

measurement accuracy in the charging and discharging maintenance process, the SOC value cannot be 

obtained very precisely only by using this equation and there are always some inevitable cumulative 

errors. However, it has strong adaptability and is available for all material type batteries. 

 

2.3.3. OCV method 

When the battery is fully open standing, there will be a corresponding relationship between the 

voltage and the battery SOC value. At a certain temperature, if the open circuit voltage of the battery 

increases, the battery SOC increases along with its increase as well. As a result, the SOC value can be 

estimated by the open circuit voltage detection. The disadvantage of this method is that the standing 

time which makes the battery inner state to be steady well is too long and it does not meet the real-time 

SOC estimation requirements in the working conditions. The OCV curve is obtained by Xing et al 

(shown in Fig. 3), by which the SOC value is estimated effectively [41]. 
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2.3.4. Linear model method 

The principle of linear model method is realized by considering the SOC value at the 1k   time 

point, i.e., 
1kSOC 
, the current voltage  U k and the current  I k  are also used in this method to 

establish a linear equation, thereby obtaining the operating SOC value of the battery, i.e.,
kSOC . The 

linear model method estimating equation is shown in Eq.3. 

   0 1 2 3 1

1

k k

k k k

SOC U k I k SOC

SOC SOC SOC

    



    


 
                                                           (3) 

Wherein, the 0 , 1 , 2 , 3  are the model parameters which can be obtained by using the 

MATLAB curve fitting method. As mentioned above, this model is quite simple while the accuracy of 

this method is not high in the SOC value estimating process. As a result, this method is used only in 

the rough estimating process. 

 

2.3.5. Internal resistance method 

The internal resistance method is realized by using external power excitation, in which a 

different frequency alternating current is used to trigger the battery excitation and the measurement of 

equation AC resistance inside the battery is done simultaneously, and the calculation model is also 

used to obtain the estimated SOC value as well. The electrical equivalent circuit model is also used as 

one of the most important parameters for the SOC estimation in KF and neural network methods [17]. 

However, the internal resistance and the SOC value are both closely related to temperature and the 

battery large extent aging effects. What’s more, the measurement for these experimental parameters is 

very difficult. As a result, the method is rarely used in EVs application environments. 

 

2.3.6. KF method 

The KF method is based on the law of Ah integration method, which is also a recursive 

estimating method. It only needs to know the status of the measured values, covariance on the time 

value, the covariance of the current state at present for calculating the SOC value. It can be calculated 

to estimate of the SOC state accurately and their estimation errors can also be obtained at the same 

time. Therefore, this SOC estimation method has better accuracy and timeliness for a variety of EVs 

battery, which experiences intense current fluctuations relatively. However, this method depends on 

the large matrix operations which require higher computing power processor. 

 

2.3.7. Neural network method 

The neural network method with nonlinear basic features is also used for LIBs. Its estimation 

process is quick, convenient, and of high accuracy. The battery SOC value can be determined in the 

site conditions. However, this method requires a large amount of training data, the estimated impact of 

the training data may be of a great error by using this training method. 
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Because the KF is based on the analysis of these above estimation methods and considering the 

battery temperature, charging or discharging current, remaining capacity, internal resistance, etc., the 

KF algorithm simulation model is more suitable for EVs and the LIBs working conditions, which can 

be realized with good accuracy. 

 

2.4. KF estimation principle 

The KF estimation is realized by using the recursive calculation thought in the estimating 

process. It can gain good experimental results to realize the SOC state estimation in the LIBs 

management system and the parameter identification. Its principle diagram is shown in Fig.1. 

 

Bk Delay+ +Ck

Dk

Ak

Xk+1 Xk
vkwk

ykuk

 
 

Figure 1. KF estimation principle 

 

The KF estimation structure can be obtained by the discrete state equation and measurement 

equation as shown in Eq.4. 

 
1

1

k k k k k k

k k k k k k

x A x B u w

y C x D u v





  


  
                                                                                          (4) 

Wherein, the parameters of kx
 and 1kx   respectively represent the intermediate variable values 

at the time points of kt  and 1kt  ; The parameter ku
 indicates the system input; kA

, kB
, kC

, kD
 are 

respectively the system state matrix, control matrix, measurement matrix and the input-output 

relationship matrix; kw  indicates the process noise, which meets the zero mathematical expectation. 

The covariance matrix of kQ has the multivariate normal distribution, the relationship of which can be 

shown as  ~ 0,k kw N Q ; kv
 is used as the measuring noise, and its mathematical expectation is zero. 

The association covariance matrix is abbreviated as kR , and the relationship of them is  ~ 0,k kw N R ; 

the parameters of ky and 1ky   respectively represent observable equations at kt  and 1kt   time points.  

This well-known KF is the first used technique for linear systems, developed by Kalman in 

1960 which is analyzed by Andre et al [15], in which the basic principle is shown for the linear 

dynamic discredited system including the process model (shown in Eq. 1) and the observation model 

(shown in Eq. 2). The process model and observation model have the same estimation principle with 

the discrete state equation and measurement equation shown in above-mentioned equation. The KF 

principle process reputes that every time points of the initial state noise and observation noise are 

independent with each other. 
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As a result, it is just necessary to know the SOC value and the predicted covariance value of 

LIBs at the time point of k , combined with the time of the observations and k  covariance. And then, 

the best estimate of the SOC value at k  moment can be obtained. This method demands the high 

accuracy of SOC value at 1k   time moment and can be done with very good convergence. Then, it 

can be known that the method described above uses the predicted values and observed values 

simultaneously. 

 

2.5. State equation and measurement equation 

In order to predict the performance of the LIBs, mounts of related research workers have 

established a number of different battery equivalent models. However, it is still not suitable to fully 

and accurately predict cell performance with just one of these models, since the model built for SOC 

estimation does not involve all the influencing factors for the LIBs cell performance. The simplest 

model is a unique model distinguished with the electrochemical theory-based analysis models. Such 

models can predict the energy storage capacity of the LIBs. In this paper, there are three models that 

are used for the representative advantages, as shown in Eq.5, Eq.6 and Eq.7 respectively. 

Shepherd Model: 

0 /k k i ky E Ri K x                                                                                  (5) 

Unnewehr Universal Model: 

0k k i ky E Ri K x                                                                                     (6) 

Nernst model: 

 0 1 2ln ln 1k k k ky E Ri K x K x                                                                (7) 

Wherein, ky  indicates the terminal voltage of the LIBs; iK
 indicates the polarization 

resistance; 0E
 indicates the initial terminal voltage of the battery pack; R is the internal resistance of 

the LIBs. 

In order to ensure the better accuracy for the SOC estimation, the combined architecture of 

these three models is used here as one comprehensive model to establish its output equation as shown 

in Eq.8. 

 0 1 2 3 4/ ln ln 1k k k k k k ky E Ri K x K x K x K x v                                            (8) 

Wherein, ky
 indicates the terminal voltage of LIBs; 

 1,2,3,4iK i 
 and its parameter R  is 

calculated by minimizing the variance principle. 

Because the sample data is obtained based on the sampling theorem detection in the data 

analysis process, we analyze the data by this analysis method requiring the use of discrete form 

analysis methods. As a result, the discrete formula of Eq.2 is built as shown in Eq.9. 

 1 /k k n kx x t Q i                                                                                   (9) 

Considering the detection error, we can obtain the improved formula as shown in Eq.10. 

 1 /k k n k kx x t Q i w                                                                              (10) 

Wherein, t  is the discrete time interval; ki  is the discrete current; the detection error is 

characterized by using variable kw
. 
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At this point, we can get the principle of the KF by using the state equation and the 

measurement equation. The Eq.10 is used as the measurement equation, and the Eq.8 is used as the 

state equation. The covariance is obtained by using the parameters kQ  and kR . By comparing the 

Eq.10, Eq.8 and Eq.4, we can get the relationship of the parameters as shown in Eq.11. 

 1, /k k nA B t Q                                                                                      (11) 

By analyzing the Eq.8, we can get the kC  value as shown in Eq.12. 

 
31 4

| 1 22

| 1 | 1| 1
1

k
k k k k

k k k k kk k

y KK K
C x x K

x x xx


 


     
                                                (12) 

Wherein, 
| 1k kx 

 represents the value we can get from the state value  1kx   , obtaining the value 

at the time of k  moment by the prediction of the 1k   time point state. 

Then, we can use the KF method to estimate the SOC value, the calculation process of which is 

shown as following. 

(1) SOC value initialization 

It is necessary to obtain the initial value of SOC and its error covariance by other means. The 

initial value of SOC in this paper is assigned as shown in Eq.13. 

 0 0 00.8, var 1SOC P SOC                                                                         (13) 

(2) Error covariance forecast 

Because of the requirement of the convergence conditions, the next step of this estimation is to 

state the value of its error covariance forecast, which is shown in Eq.14. 

 | 1 1| 1

| 1 1 1| 1 1

/k k k k n k

T T

k k k k k k W

x x t Q i

P A P A D

  

    

  


 
                                                                          (14) 

The matrixes in this model are all in one orders, i.e. the value is assigned as 1kA  , as a 

result,
| 1 1| 1k k k k WP P D    , in Which the 

WD  is used as the process noise covariance and its value in this 

paper is initialized as 0.5WD  . 

(3) KF gain process 

The KF gain process is shown as Eq.15, in which the parameters in Eq.11 and Eq.12 are used 

to predict the variable value of the next time point. 

   | 1 | 1 | 1/T T

k k k k k k k k k vx P C C P C D                                                                      (15) 

Wherein, vD
 is for measurement noise covariance, the value of which used in this paper 

is 1vD  . 

(4) The optimal estimate of the SOC value 

Considering the influences of the parameter of Y , the |k kx value can be obtained by using the 

Eq.16 shown as following. 

 | | 1 | 1k k k k k k k kx x K Y Y                                                                                (16) 

Then, it is necessary to determine the coefficients of the state equation and the measurement 

equation to estimate the optimal value of the SOC, by which the KF method can achieve up. 

The suitable test method study and design is the key factor to determine the battery state 

equation and the measurement equation described above in this model. In this paper, the federal urban 

driving cycle (FUDS) is used in the battery charging and discharging test. The FUDS performance test 

for EVs is studied for several years, and the alternating current discharging mechanism that can 
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simulate the actual discharging capacity by calculating the current of the EVs. By analyzing the FUDS 

cycle test data, the model parameters of the battery pack can be estimated using the least squares (LS) 

method, the Coulomb effects η and battery capacity nQ   correction factors. So far, it has been realized 

in the battery SOC value estimation by using the KF theory method. 

 

 

 

3. ANALYSIS MODEL DESIGN AND IMPLEMENTATION 

The overall design diagram of the analysis model is shown in Fig.2, in which we can see lots of 

important core parameter calibrations and signal inputs. Through the first charging and discharging 

module simulation of working conditions, it is necessary to calibrate the module integration method for 

estimating the SOC value. The load voltage is detected in the module and a preliminary estimate of the 

signal is infibulated into the battery SOC value estimation. The SOC value is corrected by the KF 

correction module to obtain accurate estimates. 

 

Discharge 
experiment 
simulated 
conditions

Battery model

Output 
parameters

Impact factor 
correction

Kalman 
estimate 

correction

Error 
analysisHPPC/FUDS

Current
Kalman 

estimate 
correction

Capacity 
correction

Cn

K

SOCK

YK
SOC

 
 

Figure 2. The overall design 

 
 

Figure 3. The overall structure of  estimation model diagram 
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Because this estimation method is quite complicated, the estimation process is decomposed into 

a plurality of sub-modules. The dual Kalman filter is designed by Mastali [33] which has parameter 

and state measurement update. Aiming to get a fully estimation structure, the overall estimation model 

is designed and realized as shown in the above figure. Based on the frame structure design, the overall 

structure of the total analysis model diagram is realized as shown in Fig.3. 

The realization of the core parts in the estimation model is designed and realized, which is 

shown as following. 

 

3.1. Input Module Design 

The KF algorithm is used in this paper to realize the SOC value estimation, and only the input 

variables of the LIBs charging and discharging current, combined with the battery operating 

temperature are designed here to obtain the changing law in the estimation process. 

 

3.1.1. Current Module 

When the electrons are traveling in stable output current fluctuations around a certain value, the 

output current is in line with a normal distribution. In this study, the output current of the main battery 

pack changes from 1A to 49A and the average value is 25A, with the variance of 242, the current 

model of which is shown in Fig.4. 

 

 
  

Figure 4. Current model simulation for EVs operating  

 

Wherein,  V k  subjects to the standard normal distribution. 

The output current waveform is shown in Fig.5, which can be verified by the output current 

curve obtained by Y. Xing et al [41] as shown in Fig. 2. 
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Figure 5. Output current waveform of the LIBs 

 

Li-ion battery discharge curve is obtained by  Orchard [32] which show the uncertain nature of 

the discharge profile when using the battery on a mobile mechanical system. Although the current has 

different ranges, there is a similar variation. In order to verify the accuracy of this model at the 

charging time, it is useful to set the constant current charging and discharging test module, which is 

shown in Fig.6. 

 

 
 

Figure 6. Constant charging and discharging current module 

 

The output current waveform is shown in Fig.7. The relationship between the current and the 

SOC is obtained by Hung (as shown in Fig. 4) [27], supporting this input current simulation. 

 

 
 

Figure 7. Constant charging and discharging current waveform 
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3.1.2. Temperature Module 

The EVs are traveling in a stable operating temperature fluctuation around a certain value, in 

line with a normal distribution. The temperature-checking process is done by Kim et al [14]. Referring 

to this result, the main operating temperature varies between 26.84 ℃ and 33.16 ℃, with an average 

value of 30 ℃ in this paper. Taken 10 ℃ as variance, the temperature model is designed as shown in 

Fig.8. 

 

 
 

Figure 8. Simulation model of battery operating temperature  

 

Wherein,  V k  is incited with mean value 0 and variance value 10. The output waveform of 

battery temperature is shown in Fig.9. 

 

 
 

Figure 9. Temperature module output waveform 

 

In this way, the input parameters are obtained and initialized for the inputs of the SOC 

estimation in the KF estimation process. 

 

3.2. Coulomb effect correction module 

In this paper, the KF method is used with self-convergence, and therefore it is only necessary to 

consider the impact of the discharging current, temperature and remaining battery capacity of Coulomb 

effects. The correction model is shown in Fig.10. 
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Figure 10. Coulomb effect correction model 

 

The corrected Coulomb effect is 't SOCK K  , wherein, the temperature correction coefficient 

is tK ; SOCK  indicates the remaining capacity correction coefficient, '  is used for the uncorrected 

Coulomb effect, which can be obtained by FUDS cycle test. 

 

3.3. Battery capacity correction module 

Here, it is only necessary to consider the impact of temperature on the actual battery capacity. 

The battery capacity is 45Ah and battery capacity correction model is shown in Fig.11. 

 

 
Figure 11. Battery capacity correction model 

 

3.4. Battery model parameter module 

FUDS cycle test parameters are obtained, the model of which is shown in Fig.12. 
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Figure 12. Battery model parameter module 

 

Wherein, dR  is used as discharging resistance, and cR  is used as charging resistance. 

 

3.5. Battery terminal voltage measurement module 

This module is worth the time of SOC by k  to measure the battery terminal voltage value at k 

moment, the model of which is shown in Fig.13. 

 

 
  

Figure 13. Battery terminal voltage measurement module 
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Wherein,  V k  is the measurement noise and its covariance value is vD . 

 

3.6. KF estimation module 

This module implements the use of predictive value at k   time point, namely, | 1k kSOC    and its 

error covariance measurement value ky
 at the time point k  . Its error covariance can be obtained as the 

best estimated SOC value and its error covariance can also be obtained by using the recursive filtering 

method. Wherein, the computing equation is introduced as shown in Fig.14. 

 

 
 

Figure 14. SOC value estimation module using KF method 

 

By using this module, the SOC value and its error covariance value can be obtained and used in 

the following modules. 

 

3.7. Prediction module not considering various factors 

The prediction module model not considering various factors is designed and realized as shown 

in Fig.15. 
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Figure 15. Prediction module not considering various factors 

 

Among them, the parameter K can be obtained as shown in Eq.17. 
5/ 0.001/ 45 2.22 10nK t Q                                                                      (17) 

By these calculation processes, the SOC value of the LIBs can be calculated. Then, the 

simulation experimental test is done to prove its accuracy and reliability. 

 

 

 

4. EXPERIMENTAL ANALYSIS 

4.1. Coulomb efficiency changes in FUDS conditions  

The coulomb efficiency changes in FUDS conditions are shown in Fig.16. 

 

 
   

Figure 16. Coulomb efficiency changes in FUDS conditions 

 

As we can see from the waveform, the average value of the Coulomb efficiency is about 0.97 

and all above 0.95. If the model needs less precision or battery status is relatively stable, the Coulomb 

effect can also be used directly with the value of 1. 

 

4.2. Battery capacity changes in FUDS conditions  

The battery capacity changes in FUDS testing conditions are shown in Fig.17. 
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Figure 17. Battery capacity changes in FUDS conditions 

 

It can be seen from the Fig.17 that the capacity waveform varies in the entire discharging 

process, but the battery capacity changes very little. The average value of the battery capacity is 

approximately 45.08Ah. If the model accuracy is not required, or if the battery is more stable in the 

working conditions, the battery capacity can also be used directly rating as 45Ah. 

 

4.3. Battery terminal voltage in FUDS conditions  

The battery terminal voltage assessment results in FUDS conditions are shown in Fig.18.  

 

 
 

Figure 18. Battery terminal voltage in FUDS conditions 

 

As we can see in the figure above, the battery terminal voltage decreases gradually in the 

discharging process. The modeling result for lithium-ion battery in the FUDS test at 22℃ (Fig.5) is 

obtained by Hu et al [6], in which the battery voltage varies with time in FUDS conditions. The 
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experimental result is consistent with the simulation result and has the same variation which can 

provide the reliable input parameters for the SOC estimation model. 

 

4.4. LIBs SOC value variation 

The ideal SOC variation and experimental variation for the LIBs are shown in Fig.19. The 

dashed line is the estimated value of SOC and the solid line is the ideal value variation of SOC. 

 

 
 

Figure 19. SOC estimation for LIBs in FUDS conditions 

 

In the experiment, when the SOC actual initial value is 0.8 and the test initial forecast value is 

0.6, the estimation can track the actual value in less than 5 seconds as can be seen from the waveform. 

the SOC value quick converge model output is close to the true value and has high accuracy. Yong 

Tian et al obtained the voltage profile (Fig.6) and SOC estimation results (Fig.8) by doing the 

equivalent circuit experiments under FUDS [4], which is consistent with the SOC estimation result 

using this KF estimation method. This method considers the variation of the initial state, and therefore 

is closer to the actual application. Since in this model the true value of the input is analog and the 

actual input has errors, the actual ratio of the SOC estimation error is FIG (Floated Integrating Gyro) 

greater. Thus, this model has good estimation accuracy and is suitable for LIBs SOC estimates in EVs. 

 

4.5. SOC estimates not considering the various factors  

The experimental results for SOC value estimation which does not consider the various factors 

are shown in Fig.20. 
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Figure 20. SOC estimates not considering the various factors 

 

Wherein, the actual initial values and prediction values are set to 0.8. The errors can be found 

in the waveform without considering all the factors for the SOC value estimating process, during 

which the discharging current is gradually increased. As we can see, if the discharging current has 

relatively large fluctuations, the SOC value estimating error will be greater. The cumulative SOC 

variation (Fig.4) is obtained by Truchot et al. [11], in which the variation law is almost the same as the 

estimation result by using the KF method. Because of the influence the starting state of the battery, the 

initial SOC value is a little different, starting from 1.0, but having the same vitiating law . 

 

4.6. Error covariance analysis for SOC estimates 

The error covariance for the SOC estimating experimental results are shown in Fig.21. 

 

 
 

Figure 21. Error covariance analysis for SOC estimates 
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Wherein, the EC (error covariance) value is smaller than 3.5×10
-6

  and decreases rapidly as 

time goes as can be seen in Fig.21. The waveform shows that the estimation results have good 

convergence in the LIBs charging and discharging maintenance process. 

 

 

 

5. CONCLUSION 

In summary, the combined SOC value estimation model based on the KF estimation principle 

of LIBs has good accuracy and is suitable for SOC estimate of LIBs in the EVs application and 

working conditions. 

The SOC state is a very important part of the EVs energy management system and has an 

important impact on the energy management system, which is designed to achieve its energy 

management functions and realizes battery security guaranteeing. The KF method is used to estimate 

the SOC value in varies working conditions, with very good accuracy at the time of steady driving EVs. 

The method has a smaller amount of calculation that can be applied directly for the existing battery 

management system hardware, without the need of raising the hardware standards. However, this 

method does not consider the inconsistencies and complicated road of the LIBs between the monomers 

and their influence on the accurate estimation of SOC value, which requires further improvement. 

The design of this actual SOC value estimation model for the LIBs is closely related to human 

life, energy supply, and environmental issues. It is just a starting point to study the SOC estimation 

modeling based on the MATLAB-based analysis of recycled automotive LIBs - lithium iron phosphate 

battery (LiFePO4). Firstly, a lot of literature data is analyzed for the LIBs working conditions, and the 

battery SOC definition is definitude. Then, the battery equivalent model and the common factor in the 

estimating process of the battery SOC and variety of estimation methods, establishing the design of the 

battery SOC estimation algorithm - KF algorithm. Hereafter, the combined battery equivalent model 

based on the principles established in accordance with the KF model to estimate the battery SOC 

value, which is established by the response of the circuit simulation in MATLAB. At last, the 

experimental analysis is done, in which both of the HPPS and FUDS conditions are verified. The 

resulting data is analyzed in order to prove that the model has high accuracy, good adaptability, strong 

convergence, etc. The results show that it fully meets the expectation of LIBs in the EVs working 

conditions. 
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