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The surface quality is a very critical factor in the performance of the bipolar plate due to it would 

greatly affect the contact resistance and the corrosion resistance. In this study, results of an 

investigation on the effects of milling process conditions on the surface roughness and subsequent 

electroplating of metallic bipolar plates (BPP) for proton exchange membrane fuel cell are presented. 

The results of potentiodynamic polarizations show that milling parameters (feed rate and precision 

milling) significantly affect the corrosion behavior of bipolar plates. When the AISI 1045 steel milled 

at different feed rates without precision milling, the surfaces of the formed BPP channel, generally, are 

very rough. It results in lower corrosion resistance compared to the Ni coating on a 1045 plate. When 

an additional precision milling is utilized, the surface smoothness of BPP channel is improved and, 

thus, the corrosion current density of the Ni coated BPP channel fabricated with precision milling and 

the Ni coating on a 1045 plate was shown to be similar. Finally, the chromized BPP channel fabricated 

at a feed rate of 100 mm/s with precision milling has good corrosion resistance and interfacial contact 

resistance. Both satisfy the Department of Energy‘s (DOE) goal for BPP application. The result can 

serve as reference for future research on channel fabrication.  

 

 

Keywords: fuel cell; metal bipolar plate; channel milling; nickel electroplating   

 

 

 

 

 

http://www.electrochemsci.org/
mailto:shhccit@gmail.com
mailto:meaysu@saturn.yzu.edu.tw


Int. J. Electrochem. Sci., Vol. 10, 2015 

  

1927 

1. INTRODUCTION 

High efficiency and low pollution alternative energy has become a topical subject around the 

world, and the high-performance fuel cell is one of the focuses in green energy research. The Proton 

Exchange Membrane Fuel Cell (PEMFC), which uses solid electrolyte as the medium of proton 

transfer, is characterized by low working temperature, quick start, high conversion efficiency, simple 

structure, noise free operation, pollution-free emissions, low heat source, high energy density, high 

reliability, and extensive applications. Thus, it has become the new generation of alternative energy.  

The main function of bipolar plates (BPPs) is to transfer battery current and fuel gas. The gas 

flows evenly through the gas channel to the gas diffusion layer, while the anode and cathode conduct 

electrons and heat in the reaction process. Therefore, BPPs must have superior mechanical properties, 

good electrical, thermal conductivity, and gas tightness, in order to perform PEMFC system functions 

[1-3]. The acid circuit should have corrosion resistance, chemical stability, and good heat endurance 

when combined with other battery assemblies. The BPPs production and assembly cost is about 

30~45% of the total battery cost [4]. At present, fuel cell BPPs is mostly made of graphite material, 

which is a good electrode material due to its low resistance and corrosion resistance. It generates high 

battery output power, and has stable physical and chemical properties without deterioration. However, 

due to its brittleness and poor mechanical properties, it is difficult to mechanically process the gas 

channel, as the battery may crack during assembly. This restricts the application of the battery, the cost 

is increased, and bulk production is difficult [5]. The metal is characterized by good ductility, electrical 

conductivity, machinability, airtightness, and low cost. It can remedy the defects of the traditional 

graphite bipolar plate, reducing the cost and volume of BPPs. The corrosion resistance of a metal 

bipolar plate is a problem to be solved in the development, as it may poison the proton exchange 

membrane [6,7] and reduce battery performance [8,9]. Therefore, a metal finishing technique is used to 

enhance the corrosion resistance and stability of BPPs. At present, BPP substrates can be divided into 

three types, namely iron-base alloy, nickel-base alloy, aluminum, and titanium light metals. The 

surface treatment processes include evaporation, sputtering, electroplating, chemical vapor deposition, 

and pack chromization.  

Nickel electroplating is characterized by good corrosion resistance and attrition resistance 

protecting substrate. As the nickel electroplating solution system, plating solution composition, and 

operating conditions have been well developed, the nickel electroplating process is extensively used in 

material surface treatment. In the hyperthermic treatment of iron-based material, especially carbon 

steel material, nickel electroplating forms a good barrier layer, which buffers the diffusion of iron 

atoms to the surface layer and reduces the formation of ferric oxide, resulting in good treatment 

outcome for improving the corrosion resistance and electrical conductivity of the specimen [10-12].  

Metal BPPs have good electrical conductivity, high mechanical strength, high power density, 

and easy machine shaping. At present, the common materials include stainless steel [13,14], aluminum 

alloys [15], and titanium alloys [16]. This study used AISI 1045 carbon steel as the BPP substrate for 

the consideration of efficient cost reduction. As the corrosion resistance of BPPs is mainly in the 

surface layer, the same goal can be attained by correct treatment. The iron-base material, as based on 

carbon steel, has relative advantage in relative cost performance. Previous studies [17-21] used iron-
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base material, pretreatment, and low temperature pack chromization. There are abundant results to 

prove the feasibility of using low cost iron-base material to make BPPs.  

This study discussed the nickel electroplating process of the AISI 1045 carbon steel specimen 

with a milling channel in order to determine the influence of channel processing on the electroplating 

operation, thus facilitating the evaluation of the differences between flat samples and channel samples. 

The result showed that electroplating and low temperature pack chromization can enhance surface 

corrosion resistance, thus, the appropriate process can be determined for mass production of light or 

miniature BPPs.  

 

2. EXPERIMENTAL METHOD 

2.1 Sample preparation  

The AISI 1045 carbon steel with chemical composition as shown in Table 1 was used as the 

substrate in this experiment. Specimens were cut into the dimensions of 40mm×40mm×2mm. The 

surface of the 1045 steel was polished by using silicon carbide abrasive paper up to 800#, soaked in 

acetone or alcohol, and placed in an ultrasonic oscillator to remove the surface oil and fat. Finally, it 

was dried by nitrogen for future use.  

 

Table 1. Chemical composition of AISI 1045 carbon steel  

 

Elements C Cu Mn P Fe 

wt(%) 0.4-0.5 <0.25 <0.7 <0.01 Balance 

 

The fabrication of channel was carried out on a Machining Center (MC) with a ball-end carbide 

mill. The ball-end mill used had a radius of 1 mm. The spindle speed was fixed at 8000 rpm. The feed 

rates were set as 50, 75, 100, 125, 150, and 175 mm/min. The depth of cut was 1mm, and cut through 

six passes. To fully investigate the influence of the fabrication parameters on the surface morphology 

and the subsequent electroplating, the milling was performed with or without finish milling to form 

channels from different processing conditions. The finish milling was carried out by reducing the depth 

of cut to 0.5 mm in the last pass of milling. Due to numerous defects existed on the milled surfaces and 

ultrahigh residual stress inside the channel, the formed samples were placed into the oil bath 

immediately to prevent the samples being corroded in the atmospheric environment. Before 

electroplating process, the surface oil and fat were removed with alkali in an ultrasonic cleaner for 5 

min.  

 

2.2 Nickel electroplating and low temperature pack chromization  

Before pack cementation, substrate was pretreated by Ni electroplating to activate the surface. 

The Ni layer was deposited from a nickel sulphamate-based electrolyte. The composition of the 
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electroplating bath is listed in Table 2. The Ni electroplating was carried out for 30 min with the 

conditions of 2.5 ASD, room temperature, stirring rate of 100 rpm, and pH of 3.0.  

The pack chromization was carried out following the method described in our previous study 

[10]. The pack powder used as chromizing deposition is a mixture of metallic chromium (Cr), halide 

activator (NH4Cl), and inactive filler (Al2O3) in a proper ratio. The prepared sample was immersed in 

the powder, and placed in a furnace with argon to prevent the sample from oxidizing during the pack 

chromization. Pack chromization involved two heating stages.  

 

Table 2. Composition of nickel electroplating bath  

 

Constituents g/L 

Ni(NH2SO3)2 450g 

H3BO3 30g 

DI water To 1L 

 

In Stage 1, the temperature was increased at 10℃/min to 150℃, which was maintained for 30 

min, and the water vapor in the pack chromization furnace was removed by baking. In Stage 2, the 

temperature was increased at 10℃/min to an appropriate diffusion temperature, which was 800℃ in 

this experiment. The temperature was maintained for 2 h, and reduced to room temperature before the 

sample was removed.  

 

2.3 Coating structure property and composition analysis  

The surface and cross-sectional images of the samples were observed using scanning electron 

microscopy (SEM). The sample was mounted and polished before micro etching in order to observe 

coating thickness and overall uniformity of the coating. The crystalline structures and constituent 

phases of the coatings were examined by X-ray diffraction (XRD) with Cu Kα radiation (λ = 0.15405 

nm) over a scanning range from 30
o
 to 70

o
. 

 

2.4 Electrochemical tests  

To measure the corrosion resistance, potentiodynamic tests were carried out in a typical three-

electrode cell system in which a platinum sheet acted as the counter electrode, an Ag/AgCl electrode 

(197 mV vs. SHE) as the reference electrode and the tested specimens as the working electrode. A 

0.5M H2SO4 solution at room temperature was used as the electrolyte to simulate the environment 

simulating of PEMFC. All experiments were conducted in an Autolab PGSTAT30 

potentiostat/galvanostat controlled by the GPES (General Purpose Electrochemical System) software. 

The linear polarization curves were measured in the potential range between −0.5 V and 0.8 V referred 
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to open circuit potential, with a scanning rate of 0.5 mV s
-1

. The polarization curve of the sample was 

obtained by recording the voltage or current value during the experiment. When potentiostatic tests 

were performed, the 0.6V (vs. SCE) potential with air purging was applied to simulate the cathodic 

environment in a 0.5 M H2SO4 solution at 80 ◦C for 1 h. 

 

3. RESULTS AND DISCUSSION 

3.1 Coating microstructure  

The surface roughness greatly varies with the change of milling process parameters. Figure 1 

depicts the surface morphology of nickel films deposited on the bottom surface of the BPP channels 

fabricated at different feed rates without precision milling. Scratches resulted from milling appearing 

in surface were clearly observed in the channels fabricated without precision milling. The scratches 

were not covered completely even after nickel electroplating. When a precision milling is used, 

however, the scratches inside the channel were markedly reduced, and the Ni deposits were uniformly 

coated on the surfaces (Fig. 2). 

 

 
 

Figure 1. SEM micrograph of the surface of the Ni coated BPP channel fabricated at different feed 

rates without precision milling: (a) 50 mm/min (b) 75 mm/min (c) 100 mm/min (d) 150 

mm/min (e) 175 mm/min. 

 

(a) (b) 

(d) 
(e) 

(c) 
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Figure 2. SEM micrograph of the surface of the Ni coated BPP channel fabricated at different feed 

rates with precision milling: (a) 50 mm/min, (b) 75 mm/min, (c) 100 mm/min, (d) 150 mm/min, 

(e) 175 mm/min.  

 

 
 

Figure 3. SEM micrograph of (a) plane part, and (b) concave part of surface for the Ni coated BPP 

channel fabricated at 100 mm/min with precision milling.  

 

Fig. 3 illustrates the influence of the surface topography on the grain size of nickel coatings 

obtained at plane and concave parts of the BPP channel milled at the feed rate of 100 mm/min. It can 

be clearly seen that both coatings were formed of globular grains, with typical sizes of 0.5–1.5 μm. 

However, the grain size of nickel crystallites on concave part is smaller than that of plane part. The 

results obtained suggest that for crystallite sizes may be explained in terms of surface roughness. 

Higher surface roughness of concave part, as shown by the existence of some fine scratches on the 

sample, promotes nucleation and, thus, reduction of the grain size. Similar results were observed when 

the milling was carried out at different feed rates. Therefore, only the results utilized a feed rate of 100 

mm/min were displayed in further study. 

(b) (a) 

(b) (a) (c) 

(d) (e) (f) 
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Cross-sections of the electrodeposited nickel film are presented in Fig. 4. It is observed in Fig. 

4 that the Ni layer was uniformly and continuously coated on the channel surface, which filled the 

scratches inside the channel to protect the substrate.  

 

 
 

Figure 4. The cross-sectional SEM image of the Ni coated BPP channel milled at a feed rate of 

100mm/min with precision milling.  

 

 
 

Figure 5. The cross-sectional SEM image of (a) plane, (b) bottom, and (c) side for the Ni coated BPP 

channel milled at a feed rate of 100mm/min with precision milling.  

 

 

 

 

 

 

 

 

(c) (b) (a) 
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Moreover, the Ni layer showed very compact and no pores from its cross-section observation, 

which would be expected to greatly improve its corrosion resistance. When examining the cross 

sectional SEM micrographs of the different surfaces on the same nickel coated bipolar plate channel 

(Fig. 5), it is evident that the thickness of nickel coating decreases with the increase of distance to the 

anode. The plane coating thickness was 12 μm, the side coating thickness was 10 μm, and the bottom 

coating thickness was 6 μm. The thickness of coating decreases from the plate surface to the channel 

bottom. 

The corresponding XRD spectrum for the resultant electroplated coating is shown in Fig. 6. 

Two characteristic peaks for nickel (2θ ~44.5 and 51.8), marked by their indices ((111) and (200)) 

were observed. Accordingly, it could be concluded that the Ni layer prepared in this work were of pure 

nickel.  

 

 
 

Figure 6. X-ray diffraction pattern of nickel coated BPP fabricated at a feed rate of 100mm/min with 

precision milling.  

 

3.2 Potentiodynamic test results of Ni coatings on BPP channels  

Fig. 7 shows potentiodynamic polarization curves for Ni coated BPP channels fabricated 

without precision milling in a 0.5 M H2SO4 solution at room temperature.  

The corrosion current density (Icorr) and corrosion potential (Ecorr) are calculated from the 

intercept of the anodic Tafel slope βa and cathodic Tafel slope βc, and are given in Table 3. Uncoated 

1045 steel was also included in the experiments for comparison purposes. The polarization curves of 

the Ni coated 1045 stainless steel shows a lower corrosion current density (Icorr) of 6.37×10
-5

 Acm
-2 

than bare 1045 stainless steel (3.75×10
-3 

Acm
-2

), suggesting that the Ni coating can improve the 

corrosion resistance.  
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Table 3. Icorr and Ecorr measured in a 0.5M H2SO4 solution at room temperature for bare 1045 steel and 

Ni coated BPP samples fabricated without precision milling  

 

Substrate-rough milling feed rate 

(mm/s)-coating  
βa (V/ decade) βc (V/ decade) I corr(A/cm

2
) E corr(V) 

1045 8.13 -8.82 3.75×10
-3

 -0.445 

1045-Ni 156.71 -681.22 6.37×10
-5

 -0.245 

1045-F50R-Ni 62.30 -157.80 2.14×10
-4

 -0.268 

1045-F75R-Ni 43.60 -168.95 2.62×10
-4

 -0.292 

1045-F100R-Ni 519.48 -487.80 3.97×10
-5

 -0.303 

1045-F150R-Ni 72.4 -474.16 1.34×10
-4

 -0.231 

1045-F175R-Ni 32.80 -138.24 1.82×10
-4

 -0.183 
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Figure 7. Polarization curves measured in a 0.5M H2SO4 solution at room temperature for bare, Ni 

coated 1045 steel and various Ni coated BPP channels fabricated without precision milling.  

 

On the other hand, it can be clearly seen from Table 3 that the corrosion current density of Ni 

coated BPP channels fabricated with rough milling are higher than that of the Ni coated 1045 steel 

without milling except in the case of Ni coated specimen milled at 100 mm/s. Meanwhile, the 

corrosion potential Ecorr of all Ni coated BPP channels fabricated with rough milling shift to negative 

direction by contrast to the un-milled one. This result suggests that rough milling would deteriorate the 

corrosion resistance of the Ni coated samples. This can be attributed to an increased extent of 

scratches, which not only lead to an increase in surface roughness but also affect the complete 
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coverage of Ni coating. As shown in Fig. 1, the surface of Ni coated BPP channels fabricated with a 

milling feed rate of 100 mm/s is smoothest, thus, sample 1045-F100R-Ni shows it has lowest corrosion 

current density (3.97×10
-5

). 

 

Table 4. Icorr and Ecorr measured in a 0.5M H2SO4 solution at room temperature for Ni coated BPP 

samples fabricated with precision milling  

 

Substrate-rough and precision 

milling feed rate (mm/s) -coating  
βa (V/ decade) βc (V/ decade) I corr(A/cm

2
) E corr(V) 

1045-F50F-Ni 88.70 -114.06 9.72×10
-5

 -0.295 

1045-F75F-Ni 336.42 -442.20 3.92×10
-5

 -0.290 

1045-F100F-Ni 274.72 -363.32 3.72×10
-5

 -0.295 

1045-F125F-Ni 258.33 -212.76 2.58×10
-5

 -0.312 

1045-F150F-Ni 184.87 -206.18 2.35×10
-5

 -0.300 

1045-F175F-Ni 358.74 -466.32 2.27×10
-5

 -0.304 
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Figure 8. Polarization curves measured in a 0.5M H2SO4 solution at room temperature for bare 1045 

steel and various Ni coated BPP channels fabricated with precision milling.   

 

SEM micrographs of Ni coatings on surface with different milling (Fig.1 and Fig. 2) clearly 

demonstrated that the morphologies of Ni coatings were visually different. The extent of surface 

roughness significantly reduced as a precision milling step was performed. Improved corrosion 

resistance can be expected for these Ni coated BPP channels fabricated with precision milling due to 

their smoother surfaces which having fewer flaws and defects. The potentiodynamic polarization 

curves for Ni coated BPP channels fabricated with precision milling in a 0.5 M H2SO4 solution at room 
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temperature are shown in Fig. 8. Their corresponding corrosion current densities, corrosion potentials, 

anodic Tafel slope βa and cathodic Tafel slope βc are listed in Table 4. The icorr decreased with an 

increase of the precision milling feed rate.   One may see from the result of Table 4 that the corrosion 

resistance increased with an increase in smoothness. The result is consistent with the literature report 

[22] which shows that the corrosion resistance can be improved by smoothing the surface.  

 

 

3.3 Effect of low temperature pack chromization  

 
 

Figure 9. SEM micrograph of (a) plane part, and (b) concave part of surface for the chromized BPP 

channel fabricated at 100 mm/min with precision milling.  

 

Pack chromization is one of the easiest and cheapest processes to obtain the chromizing 

coatings to improve the corrosion resistance, hardness, and weariness of various carbon steels [23, 24]. 

Unfortunately, the pack cementation was normally performed at temperatures above 1000 ℃, which 

has a detrimental effect on the mechanical properties of work pieces.  

Therefore, reducing pack-cementation temperature is required for widespread application of the 

chromizing coatings. Generally, the operation temperature can be decreased by activating the surface 

of the base metal [25]. In previous study [25] has shown that electroplating of Ni is an effective 

method to activate the stainless steel for subsequent pack chromization. To prevent the diffusion of 

iron atoms from the substrate to the surface layer during the chromization process and produce a 

homogeneous as well as continuous chromium coating, therefore, the low temperature pack 

chromization was only performed on the Ni coated BPP samples fabricated with precision milling. 

Surface morphologies of specimen 1045-F100F-Ni-Cr(800-2) chromized at 800 ℃ for 2 h are shown 

in Fig. 9. It shows from Fig. 9 that a compact and continuous chromized layer was deposited on both 

plane and bottom parts of BPP channel fabricated at feed rate of 100 mm/s with precision milling.  

The potentiodynamic polarization curves of chromized coating, Ni coated 1045 steel and raw 

1045 steel tested in a 0.5 M H2SO4 solution at 25℃ are shown in Fig. 10. The corresponding corrosion 

parameters, including corrosion potential, corrosion current density, anodic Tafel slope βa and cathodic 

Tafel slope βc are listed in Table 5.  

 

(a) (b) 
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Figure 10. Polarization curves measured in a 0.5M H2SO4 solution at room temperature for bare 1045 

steel, Ni coated BPP channel, and chromized BPP channel.  

 

Table 5. Icorr and Ecorr measured in a 0.5M H2SO4 solution at room temperature for bare 1045 steel, Ni 

coated BPP sample and chromized BPP sample  

 

Substrate-rough and precision 

milling feed rate (mm/s) –coating1-

coating2  

βa (V/ decade) βc (V/ decade) I corr(A/cm
2
) E corr(V) 

1045 8.13 -8.82 3.75×10
-3

 -0.445 

1045-F100F-Ni 470.10 -471.15 3.72×10
-5

 -0.304 

1045-F100F-Ni-Cr(800-2) 16333.33 -11340.20 1.67×10
-6

 -0.219 

 

The polarization curves of Ni coated 1045 steel and raw 1045 steel are almost free of active-

passive transition, while the chromized 1045 steel shows a typical polarization curve of passive metals. 

It is clear from Fig. 10 that the corrosion potential of chromized sample is higher than that of the 

substrate and Ni coated specimen, but the corrosion current density is much lower, indicating that the 

corrosion resistance of the 1045 steel is obviously modified by chromization process based on the 

analyses of polarization curves. This result can be further confirmed from Table 5. Additionally, the 

contact resistance was 8 mΩ×cm
2
 under the compressive stress of 140 N/cm

2
, which met the 

commercial specifications of the fuel cells of the United States Department of Energy (DOE).  
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4. CONCLUSION 

The effect of milling process parameters on surface roughness of AISI 1045 steel BPPs was 

investigated. Our results showed that feed rate is highly responsible for the surface roughness. The 

BPP channel fabricated without precision milling resulted in more scratches and plastic deformation. 

Even after nickel electroplating, the scratches were still visible. Ni coated BPP channel fabricated 

without precision milling resulted in lower corrosion resistance compared to the Ni coating on a 1045 

plate. Nevertheless, all the corrosion resistances acquired for the Ni coated BPP channel fabricated 

with precision milling were extremely improved. The corrosion current density of the Ni coated BPP 

channel fabricated with precision milling and the Ni coating on a 1045 plate was shown to be similar. 

It indicates that an additional precision milling procedure could effectively increase the surface 

smoothness and, thus, reduce the influence of the milling feed rate on electroplating. The polarization 

curve measured in a 0.5 M H2SO4 solution at room temperature showed that the corrosion resistance of 

the BPP channel was dramatically improved after low temperature pack chromization. Both corrosion 

current density and ICR value of chromized sample meets the U.S. DOE target for bipolar plate 

application.  
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