Synthesis of Fe₃O₄@C Composites Using Cellulose and Ferric Tartrate Complex as Precursor and Their Application as Anode for High Performance Lithium-Ion Batteries

Chengmin Sun^{1,§}, Xiang Zheng^{1,§}, Tian Sun^{1,§}, Zhengguan Xu¹, Yapeng Yuan¹, Xuehua Liu¹, Aiping Fu^{2,3}, Hongliang Li^{1,3,*}

 ¹ Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
² College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
³ State Key Laboratory of Biopolysaccharide Fiber Forming and Eco-Textile, Qingdao University, Qingdao 266071, China
[§] These authors contribute equally to this work
^{*}E-mail: <u>lhl@qdu.edu.cn</u>

doi: 10.20964/2021.05.53

Received: 25 January 2021 / Accepted: 14 March 2021 / Published: 31 March 2021

Fe₃O₄ is a kind of promising anode material for lithium-ion batteries, however, the poor electrical conductivity and serious volume expansion limit their practical application in practice. In this article, the Fe₃O₄@C composite is prepared by facilely decomposing of the cellulose/ferric tartrate complex system. A ferric tartrate complex aqueous solution has been explored to dissolve cellulose. After a freeze-drying and subsequently carbonization at high temperature, ferric tartrate complex is decomposed to Fe₃O₄ and deposited homogenously inside the porous carbon derived from cellulose, obtaining the in-situ porous Fe₃O₄@C composites. The porous carbon can provide good electrical conductivity and adapt to the volume change of the Fe₃O₄ anoparticles in electrochemical research. As LIB anode material, The Fe₃O₄@C anode delivers high initial charging capacity of 864.9 mAh·g⁻¹ at 100 mA·g⁻¹ and excellent cycling stability of 86.4% capacity retention after 300 cycles at 1000 mA·g⁻¹.

Keyword: Cellulose, Ferric tartrate complex, Fe₃O₄@Carbon composite, Lithium-ion batteries.

FULL TEXT

© 2021 The Authors. Published by ESG (<u>www.electrochemsci.org</u>). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).