Preparation and Electrochemical Properties of Porous Carbon Materials Derived from Waste Plastic Foam and Their Application for Supercapacitors

He Zhu, Songhong Fan, Zhishang Gao, Zhangzhang Tang, Zhong Ren, Mingjian Zhang, Huixia Feng, Heming Luo^{}, Jianqiang Zhang^{*}*

School of Petrochemical Engineering, Lan Zhou University of Technology, Lanzhou 730050, China *E-mail: <u>luohm666@163.com</u>, <u>zhangjq@lut.edu.cn</u>

doi: 10.20964/2021.03.59

Received: 29 November 2020 / Accepted: 12 January 2021 / Published: 31 January 2021

In order to achieve resource recycling and environmental protection, the waste plastic foam-based porous carbon material PMC-T is prepared by a high-temperature pyrolysis activation method. Plastic foam-based porous carbon PMC-T is an amorphous carbon with a honeycomb-like structure, a specific surface area of up to 2281 m² g⁻¹, and a reasonable pore size distribution. Cyclic voltammetry tests and galvanostatic charge/discharge tests show that the plastic foam-based porous carbon material PMC-700 exhibits excellent electrochemical performance. Specifically, in a 6 M KOH electrolyte at a 1 A g⁻¹ current density, the specific capacitance reached 296 F g⁻¹. Additionally, PMC-T demonstrates good cycle stability, and after 5000 charging and discharging cycles, its capacitance retention rate is as high as 87.1%. The plastic foam-based porous carbon exhibits excellent electrochemical properties.

Keywords: Waste plastic foam; Porous carbon material; Supercapacitor; Specific surface area; Electrochemical performance

FULL TEXT

© 2021 The Authors. Published by ESG (<u>www.electrochemsci.org</u>). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).