Construction of Fe₃O₄/FeP Binary Composite Catalyst for Degradation of Tetracycline in Wastewater

Huancong Shi^{1,*}, Qiming Wu¹, Xuan Yang¹, Yuanhui Zuo^{2,*}, Hu Yang¹, Ranran Zhang¹, Yun Zhang¹, Yi Fan¹, Xiaowei Du⁴, Linhua Jiang^{3,*}

¹ Department of Environmental Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093.

² College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
³ Engineering Research Center of AI & Robotics, Academy for Engineering & Technology, Fudan University, Shanghai 200433, P.R. China.

⁴ College of Environment and resources, Fuzhou University, Fuzhou 350108, China *E-mail: <u>hcshi@usst.edu.cn</u>, <u>zyh06101@163.com</u>, <u>Jianglinhua@fudan.edu.cn</u>.

doi: 10.20964/2021.03.70

Received: 19 November 2020 / Accepted: 7 January 2021 / Published: 31 January 2021

The abuse of antibiotics greatly aggravates water pollution. Tetracycline hydrochloride (TC), has been widely used all over the world as a typical antibiotic. In order to dispose of TC, a series of Fe₃O₄/FeP composite materials were synthesized with the combination of hydrothermal synthesis and partial phosphating annealing method. Meanwhile, the morphology and structural characteristics were investigated using characterization such as diffraction of X-rays (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), electro-chemical impedance spectroscopy (EIS) etc. The dark adsorption and photocatalytic activity of Fe₃O₄/FeP were investigated comprehensively to remove the target molecule tetracycline. Results indicated that Fe₃O₄/FeP catalysts have a superior performance on dark adsorption, and good effect of TC degradation. Among synthesized photocatalysts, Fe₃O₄/FeP-6 (molar ratios of Fe:P at 1:6) possessed the optimized performance in adsorption capacity and photodegradation efficiency (88%) comparing to the other ratios. Furthermore, the stability and reusability of Fe₃O₄/FeP-6 ensured the cyclic photocatalysis experiment. This synthesized catalyst has proved its potential application in wastewater treatment.

Keywords: Fe₃O₄/FeP; photodegradation; tetracycline hydrochloride; in-situ partial phosphating.

FULL TEXT

© 2021 The Authors. Published by ESG (<u>www.electrochemsci.org</u>). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).