International Journal of ELECTROCHEMICAL SCIENCE www.electrochemsci.org

Electrodeposition of carbon cloth supported Co-Mo-B bifunctional catalytic electrode for water splitting

Fu Wang^{1,2,#}, Xuewei Zhu^{1,#}, Jialun Shi³, Yucheng Wu^{1,2}, Sensen Xin^{2,*}, Xiaofeng Wei^{1,*}, Wei Su⁴, Qiongyu Zhou⁵, Minqi Sheng^{3,*}

- ¹ College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, China
- ² Guangdong Midea Kitchen & Bathroom Appliances Co.,Ltd. ,Foshan 528000, China
- ³ Shagang School of Iron and Steel, Soochow University, Suzhou 215021, China
- ⁴ School of Physic and Electronic Science, Zunyi Normal University, Zunyi, 563006, China
- ⁵ School of Materials Science and Energy Engineering, Foshan University, Foshan 528000, China
- [#]F. Wang and X. Zhu contributed equally to this work.

doi: 10.20964/2021.03.01

Received: 1 November 2020 / Accepted: 26 December 2020 / Published: 31 January 2021

Water splitting has attracted increasing global interest due to its ability of produce high purity hydrogen, but lack of non-noble metals based bifunctional catalysts with highly active for both hydrogen evolution and oxygen evolution reaction (HER and OER) substantially hinders its applications in large-scale. In this work, we propose a facile approach to fabricate a self-supported Co-Mo-B/CC electrode, via electrodepositing amorphous Co-Mo-B spheres on the carbon cloth (CC) supports. The prepared Co-Mo-B/CC electrode possesses comparable catalytic activity for HER with a low overpotential of 84.5 mV at -10 mA cm⁻² (cathodic current density). Meanwhile, it displays high activity for OER with 92.6 mV at 10 mA cm⁻² (anodic current density). In addition, the two-electrode electrolysis system of Co-Mo-B/CC(-)//Co-Mo-B/CC(+) exhibits a quite low cell voltage of 1.694 V to drive $j_{cell} = 10$ mA cm⁻² for overall water splitting and outstanding durability, which makes it a promising bifunctional electrocatalyst for both the HER and OER.

Keywords: Co-Mo-B, Carbon cloth, Water splitting, Hydrogen evolution reaction, Oxygen evolution reaction

FULL TEXT

© 2021 The Authors. Published by ESG (<u>www.electrochemsci.org</u>). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

^{*}E-mail: sensen.xin@midea.com (S.Xin), wxf8412@nwafu.edu.cn (X. Wei), shengminqi@suda.edu.cn (M. Sheng)