Hydrogen Production by water Electrolysis with an Ultrathin Anion-exchange membrane (AEM)

Immanuel Vincent, Andries Kruger and Dmitri Bessarabov*

DST HySA Infrastructure Centre of Competence, Faculty of Engineering, North-West University, Potchefstroom, 2520, South Africa
*E-mail: Dmitri.bessarabov@nwu.ac.za
doi: 10.20964/2018.12.84

Received: 30 August 2018 / Accepted: 5 October 2018 / Published: 5 November 2018

A new ultrathin anion exchange membrane (AEM) is proposed for low cost AEM electrolysis. The advantages that thin membranes offer include reduced mass transport resistance and ohmic resistance. A membrane electrode assembly (MEA) with a thinner membrane will have improved hydroxide ion transfer due to the shorter ion transfer pathway. We fabricated a MEA with a commercially available ultrathin A-901 membrane (9 µm thick) and non-noble metal catalysts. We determined the efficiency and stability of this ultrathin membrane using electrochemical impedance spectroscopy. The best performance recorded was 400 mA cm$^{-2}$ at 1.94 V at 50 $^\circ$C. Over a period of 200 h, the voltage increase was only 200 µV h$^{-1}$, which is <60% that of the more commonly used A-201 membrane. The ultrathin A-901 membrane exhibited slightly higher performance compared to the A-201 for a given catalyst, catalyst loading, and electrolyte concentration. Acta 3030® (CuCoO$_x$) and Acta 4030® (Ni/(CeO$_2$-La$_2$O$_3$)/C) were employed as the oxygen evolution reaction and hydrogen evolution reaction catalysts, respectively.

Keywords: A-901 AEM membranes, A-201 AEM membranes, Membrane electrode assembly, Oxygen evolution reaction, Hydrogen evolution reaction, Electrochemical impedance spectroscopy.

FULL TEXT

© 2018 The Authors. Published by ESG (www.electrochemsci.org). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).