Green and Facile Synthesis of Porous Hierarchical Cr₂O₃/N-doped Carbon Composite with High Li-Ion Battery Anodic Shuang Ma¹, Yingming Xu¹, Xiaoli Cheng¹, Xianfa Zhang^{1,*}, Shan Gao¹, Hui Zhao¹, Lihua Huo^{1,*} Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, PR China *E-mail: lhhuo68@163.com, zhangxf 1982@126.com doi: 10.20964/2018.06.26 **Performance** Received: 2 February 2018 / Accepted: 15 March 2018 / Published: 10 May 2018 A green and facile bio-template method was developed to synthesize porous hierarchical Cr_2O_3/N -doped carbon (denoted as Cr_2O_3/NC) composite using egg-shell membrane as template and carbon source. The as-prepared Cr_2O_3/NC composite is assembled from interwoven and coalesced porous microfibers. The microfibers are constructed by Cr_2O_3 nanoparticles uniformly encapsulated 1D porous N-doped carbon matrix. Importantly, the as-prepared Cr_2O_3/NC electrode shows a superior Liion battery anodic performance. Under a current density of 100 mA g^{-1} , the Cr_2O_3/NC sample has a specific discharge capacity of 640 mA h g^{-1} after 100 cycles. Moreover, after 50 cycles at a high current density of 1000 mA g^{-1} , the sample exhibits a discharge capacity of 368 mA h g^{-1} . The outstanding Li-storage performance of the composite should be attributed to the stable porous hierarchical structure, large specific surface area and highly conductive N-doped carbon matrix. **Keywords:** Hierarchical structure, Cr₂O₃/N-doped carbon composite, Bio-template method, Li-ion battery ## **FULL TEXT** © 2018 The Authors. Published by ESG (<u>www.electrochemsci.org</u>). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).