Cu-Ni Alloy Catalyzed Electrochemical Carboxylation of Benzyl Bromide with Carbon Dioxide in Ionic Liquid 1-Butyl-3methylimidazolium tetrafluoroborate

Dai Yimin^{1,*}, Niu Lanli¹, Liu Hui¹, Zou Jiaqi¹, Yu Linping¹, Feng Qiuju²

 ¹ School of Chemistry and Biological Engineering, Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Changsha University of Science and Technology, Changsha 410114, China
² College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
*E-mail: <u>yimindai@sohu.com</u>

doi: 10.20964/2018.01.85

Received: 28 July 2017 / Accepted: 9 October 2017 / Published: 16 December 2017

A novel, direct and efficient electroreduction method of benzyl bromide in ionic liquid BMIMBF₄ has been developed by potentiostatic electrolysis. Under the atmospheric pressure of CO_2 , the electrosynthesis was performed in an undivided cell with Cu-Ni cathode and Al anode. A moderate yield (39.4%) of ethyl phenylacetate **1** as the principal product was obtained, accompanied astonishingly by yield (4.6%) of benzyl ether **2**. Synthetic factors such as electrode material, working potential and electric charge were found to influence the carboxylation yields. The results indicate that the porous structure Cu-Ni alloy electrode with different adsorption energies for CO_2 and benzyl bromide played an ensemble effect role in the reaction efficiency and products distribution. Moreover, the ionic liquid was successfully recycled and a plausible reaction mechanism was proposed.

Keywords: Benzyl bromide; Carbon dioxide; Ionic liquid; Electrocarboxylation; Cu-Ni alloy

FULL TEXT

© 2018 The Authors. Published by ESG (<u>www.electrochemsci.org</u>). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).