Influence of CO₂ and H₂S Concentration on Hydrogen Permeation Behavior of P110 Steel

Shuliang Wang¹, Liang Wang¹, Xueguang Liu^{1,3}, Mingyu Bao¹, Li Liu^{1,*}, Xin Wang^{1,*}, Chengqiang Ren^{1,2}

¹ School of Materials Science and Engineering, Southwest Petroleum University, Chengdu, China, 610500

² State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, China, 610500

³ Petro China Southwest Oil & Gasfield Company, Chengdu, China, 610213 *E-mail: <u>wsliang1465@126.com, xin.wang@swpu.edu.cn</u>

doi: 10.20964/2017.11.29

Received: 17 July 2017 / Accepted: 5 September 2017 / Published: 12 October 2017

The effect of CO_2 and H_2S concentration on the electrochemical and hydrogen permeation behaviors of P110 steel was investigated separately. The results showed that the corrosion current density was enhanced, while the polarization resistance and charge-transfer resistance decreased as the concentration of CO_2 and H_2S increased. The variation rule of hydrogen permeation behaviors can be described below: the hydrogen diffusion coefficient had little changed, whereas both of the diffusible hydrogen concentration and the steady-state hydrogen permeation current density increased. The steady-state hydrogen permeation current density in H_2S environment was far greater than that in CO_2 environment, which was caused by the poisoning of H_2S . The relationship between the hydrogen diffusion coefficient and temperature can be described by Arrhenius equation according to the hydrogen permeation curves at different temperatures.

Keywords: Electrochemistry; Hydrogen Permeation; P110 Steel

FULL TEXT

© 2017 The Authors. Published by ESG (<u>www.electrochemsci.org</u>). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).