An investigation of the NO₃⁻ concentration effect on lead anodic electrochemical behavior in NaOH solution

Yunlong He¹, Ruidong Xu^{1,2,*}, Shiwei He¹, Hansen Chen¹, Kuo Li¹, Yun Zhu¹, Qingfeng Shen¹

¹ Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China;

² State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunning 650093, China

^{*}E-mail: <u>rdxupaper@aliyun.com</u>

doi: 10.20964/2017.10.28

Received: 25 June 2017 / Accepted: 4 August 2017 / Published: 12 September 2017

An electrochemical investigation of the effect of NO_3^- concentration on lead anodic behavior in 4 M NaOH solution was performed using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The results reveal that the NO_3^- concentration has a positive influence on the formation of PbO at -0.46 V (SHE) from $0.0 \sim 0.24$ M and a negative influence from $0.36 \sim 0.60$ M. A large dosage of NO_3^- benefits the formation of PbO₂. Mechanisms for NO_3^- influence on the formation of PbO and PbO₂ on the lead surface were proposed. The anodic electrochemical behavior of lead in NaOH-NaNO₃ solution was successfully illustrated based on the mechanisms. SEM observation provided surface morphologies of lead electrodes obtained after potentiostatic polarization at a fixed potential in NaOH solution with different NO_3^- concentrations. XPS results indicate that the lead electrode surface is composed of PbO, Pb₃O₄ and PbO₂, which agrees with the analysis results of the cyclic voltammogram.

Keywords: lead; anodic electrochemical behavior; cyclic voltammetry; sodium nitrate;

FULL TEXT

© 2017 The Authors. Published by ESG (<u>www.electrochemsci.org</u>). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).