Ag Functionalized Molybdenum Disulfide Hybrid Nanostructures for Selective and Sensitive Amperometric Hydrogen Peroxide Detection

Zhenting Zhao¹, Jie Liu², Wenda Wang², Jun Zhang², Gang Li², Jianqi Liu¹, Kun Lian², Jie Hu^{2,*}, Serge Zhuiykov^{3,*}

¹ School of Information Engineering, Guangdong Mechanical & Electrical College, Guangzhou 510515, Guangdong, China

²Micro and Nano System Research Center, Key Lab of Advanced Transducers and Intelligent Control System (Ministry of Education) & College of Information Engineering, Taiyuan University of Technol ogy, Taiyuan 030024, Shanxi, China

³ Ghent University Global Campus, Department of Applied Analytical & Physical Chemistry, Faculty of Bioscience Engineering, 119 Songdomunhwa-ro, Yeonsu-gu, Incheon 21985, South Korea ^{*}E-mail: <u>hujie@tyut.edu.cn</u>, <u>serge.zhuiykov@ghent.ac.kr</u>

doi: 10.20964/2017.09.69

Received: 6 May 2017 / Accepted: 24 July 2017 / Published: 13 August 2017

Ag nanoparticles functionalized flower-like molybdenum disulfide (MoS₂) hybrid nanostructures (AgNPs/MoS₂) were successfully synthesized by a facile hydrothermal method. The structure and surface morphology were subsequently characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) techniques. The as-synthesized AgNPs/MoS₂ hybrid nanostructures were modified on a glassy carbon electrode (GCE) and further utilized for amperometric hydrogen peroxide (H₂O₂) detection. The electrochemical behaviors and sensing performance of the AgNPs/MoS₂/GCE were studied by cyclic voltammetry (CV) and single-potential amperometry methods. The obtained results have demonstrated that the developed AgNPs/MoS₂/GCE amperometric sensor possesses an excellent catalytic performance toward the reduction of H₂O₂. The as-prepared electrochemical sensor exhibits fast response time of less than 3 s, large linear detection range of 0.025-135.2 mM (R^2 =0.998) and high sensitivity of 54.5 μ A·mM⁻¹·cm⁻². Moreover, the developed H₂O₂ sensor has shown good anti-interference ability, outstanding stability and reproducibility, which represents a great potential for H₂O₂ detection in practical applications.

Keywords: Molybdenum disulfide, Silver nanoparticles, Hydrogen peroxide, Electrochemical sensor

FULL TEXT

© 2017 The Authors. Published by ESG (<u>www.electrochemsci.org</u>). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).