International Journal of ELECTROCHEMICAL SCIENCE www.electrochemsci.org

Cost Modeling for Wastewater Treatment by Using a Packedbed Electrode Reactor (PBER)

Lizhang Wang^{1, 2}, Yan Kong¹, Dongyang Wei³, Ying Kong¹, Peng Li⁴, Xinmei Jiao¹

¹ School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou City, Jiangsu 221116, PR China;

²NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, 117411, Singapore;

³South China Institute of Environmental Sciences, the Ministry of Environmental Protection (MEP) of PR China, Guangzhou City, Guangdong 510655, PR China;

⁴School of Water Resource & Environmental Engineering, East China Institute of Technology, Nanchang, Jiangxi 330013, PR China

*E-mail: wlzh0731@126.com

doi: 10.20964/2017.09.30

Received: 3 May 2017 / Accepted: 1 July 2017 / Published: 13 August 2017

A cost model is presented to predict the power consumption and the demanded electrode area of a packed-bed electrode reactor (PBER) during wastewater treatment. The experimental results from oxidation of organic pollutants in ribonucleic acid (RNA) manufacturing wastewater on an IrO₂-Ta₂O₅/Ti anode show high agreement with model prediction, directly verifying rationality of the proposed model. Hence, the presented kinetics can provide a new approach for accurate estimation of electro-oxidation and a useful tool for cell design during electrochemical wastewater treatment by using the PBER.

Keywords: wastewater treatment; cost modeling; packed-bed electrode reactor (PBER); power consumption; demanded electrode area

FULL TEXT

© 2017 The Authors. Published by ESG (<u>www.electrochemsci.org</u>). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).