Al³⁺ doped Fe₃O₄ Nanoparticles: A Novel Preparation Method, Structural, Magnetic and Electrochemical Characterizations

Mustafa Aghazadeh¹, Isa Karimzadeh², Mohammad Reza Ganjali^{3,4,*} and Ali Malekinezhad¹

¹ Materials and Nuclear Research School, Nuclear Science and Technology Research Institute (NSTRI), P.O. Box 14395-834, Tehran, Iran

² Department of Physics, Faculty of Science, Central Tehran Branch, Islamic Azad University, Tehran, Iran

³Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran

⁴ Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran

^{*}E-mail: <u>ganjali@khayam.ut.ac.ir</u>

doi: 10.20964/2017.09.145

Received: 30 April 2017 / Accepted: 29 June 2017 / Published: 13 August 2017

Aluminum doped magnetite (Fe₃O₄) nanoparticles were synthesized through one-pot facile electrochemical method. In this method, products were electro-deposited on a stainless steel (316L) cathode form an additive-free 0.005M Fe(NO₃)₃/FeCl₂/AlCl₃ aqueous electrolyte. The structural characterizations through X-ray diffraction (XRD), field emission electron microscopy (FE-SEM) and energy-dispersive X-ray (EDX) indicated that the deposited material has Al doped magnetite particles with average size of 15 nm. Magnetic analysis by VSM showed the super-paramagnetic nature of the prepared nanoparticles (Ms = 18.37 emu g⁻¹, Mr=0.13 emu g⁻¹, and $H_{Ci}=8.73$ G). The charge storage capability evaluation of the prepared nanoparticles through cyclic voltammetry (CV) and galvanostat charge-discharge (GCD) confirmed that these materials are capable to deliver specific capacitances as high as 236.1 F g⁻¹ (at 0.2 A g⁻¹) and 180.2 F g⁻¹ (at 1 A g⁻¹), and capacity retentions of 95.6% and 89.4% after 2000 cycling at 0.2 and 1 A g⁻¹, respectively. The results confirmed that the applicability of the electro-synthesized nanoparticles in supercapacitors. Besides, the study shows a simple electrochemical method for preparation of metal doped magnetite nanoparticles.

Keywords: Nanoparticles; Magnetite; Al doping; Cathodic electrosynthesis; Charge storage

FULL TEXT

© 2017 The Authors. Published by ESG (<u>www.electrochemsci.org</u>). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).