Polyvinylpyrrolidone-assisted Solvothermal Synthesis of Porous LaCoO₃ Nanospheres as Supercapacitor Electrode

Yazhou Guo¹, Tianyan Shao¹, Huihui You¹, Sheng Li¹, Chao Li¹, Lei Zhang^{1,2*}

¹ School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China

² Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China

*E-mail: zll@tju.edu.cn

doi: 10.20964/2017.08.47

Received: 29 April 2017 / Accepted: 6 June 2017 / Published: 12 July 2017

A polyvinylpyrrolidone (1-ethenylpyrrolidin-2-one or PVP)-assisted solvothermal method has been developed to synthesize porous LaCoO₃ nanospheres. Appropriate PVP addition may effectively prohibit the growth of nanospheres and plays an important role in reducing the size of LaCoO₃. The porous morphology of LaCoO₃ nanospheres can be obtained by an annealing process to achieve a specific capacitance of 203 F g⁻¹ at a current density of 1 A g⁻¹ with good cyclic stability for LaCoO₃ which has been prepared with 0.5 g PVP. This attributes to the synergistic effect of both size reduction and porous morphology.

Keywords: perovskite; porous; LaCO₃ nanospheres; supercapacitor; polyvinylpyrrolidone

FULL TEXT

© 2017 The Authors. Published by ESG (www.electrochemsci.org). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).