Identification of Two Positional Isomers between Ortho-Vanillin and Para-Vanillin by their Inhibitory Effects on a Briggs-Rauscher Oscillator

*Waqar Uddin*¹, *Gang Hu*^{1,*}, *Lin Hu*², *Yanyang Hu*³, *Zhaohui Fang*⁴, *Saif Ullah*¹, *Xuanxuan Sun*¹, *Xiaofeng Shen*¹, *and Jimei Song*¹

¹Department of Chemistry, Anhui University, Hefei, 230601, People's Republic of China
²Institute of Applied Chemistry, East China Jiaotong University, Nanchang, 330013, People's Republic of China
³ Department of Chemistry, Purdue University, West Lafayette, IN, 47907, U.S.A
⁴The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, People's Republic of China
*E-mail: hugang@ustc.edu

doi: 10.20964/2017.05.13

Received: 28 January 2017 / Accepted: 4 March 2017 / Published: 12 April 2017

A suitable method by means of Briggs-Rauscher (BR) oscillating system as an analytical technique to identify the two positional isomers between ortho-vanillin (OV) and (para-)vanillin (PV) by their different perturbation effects has been proposed in this article. In BR system the macrocyclic Ni-complex, [NiL](ClO₄)₂ was used as catalyst, in which ligand L is 5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradeca-4,11-diene. The experimental data has proven that putting equal amount of same concentrations of these isomers (OV and PV) separately into the active BR system could cause the inhibition time (t_{in}). But the t_{in} initiated by OV is higher as compared to the t_{in} produced by PV. Our predication for such different inhibitory effects caused by these isomers may be due to their different existing strength of intermolecular hydrogen-bonding. Furthermore, by plotting t_{in} against the concentrations range 2.5 × 10⁻⁶ mol L⁻¹ to 4 × 10⁻⁵ mol L⁻¹ with correlation coefficients of 0.98, which obviously illustrated the different behaviors of isomers. The perturbation reaction mechanism, involving hydroperoxyl radical (HOO[•]) on the basis of FCA has been proposed. The description of the proposed mechanism is that these isomers react with hydroperoxyl radical to form a dimeric product (divanillin).

Keywords: Briggs-Rauscher Oscillator; Inhibition time; Isomers Identification; Ortho Vanillin; Para Vanillin

FULL TEXT

© 2017 The Authors. Published by ESG (<u>www.electrochemsci.org</u>). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).