Influence of Y₂O₃/Nd₂O₃ Particles Additive on the Corrosion Resistance of MAO Coating on AZ91D Magnesium Alloy

Jingmao Zhao^{1,2}, Kening Ouyang¹, Xiong Xie¹, Jianwen Zhang^{3,*}

¹ College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
² State Key Laboratory of Materials Electrochemical Process and Technology, Beijing University of Chemical Technology, Beijing 100029, China
³ College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029,

China

*E-mail: <u>zhangjw@mail.buct.edu.cn</u>

doi: 10.20964/2017.03.23

Received: 28 November 2016 / Accepted: 4 January 2017 / Published: 12 February 2017

Micro-arc oxidation (MAO) coatings with the addition of Y_2O_3/Nd_2O_3 particles were formed on AZ91D magnesium alloy. The corrosion behaviors of the coated AZ91D samples were studied by using potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), and immersion test. Scanning electron microscope (SEM) and energy dispersive spectrometer (EDS) were used to characterize the microstructure and elemental compositions of the coatings. It is found that the micropores and defects of the coating decreases with the addition of Y_2O_3 particles, resulting in the improved corrosion resistance, while the corrosion resistance of AZ91D magnesium alloy is decreased with the addition of Nd_2O_3 particles.

Keywords: Magnesium alloy; MAO; Y₂O₃; Nd₂O₃; Corrosion resistance

FULL TEXT

© 2017 The Authors. Published by ESG (<u>www.electrochemsci.org</u>). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).