Eco-friendly Synthesis of Gold Nanoparticles by Using *B. javanica Blume* Leaves Extract Encapsulated with Graphene Oxide for Selective Electrochemical Detection of Dopamine

R. karthik¹, *K.* Saravanakumar², Shen-Ming Chen^{1,*}, *J.* Vinoth Kumar², Chia-Ming Lee¹, Bih-Show Lou^{3,4*}, *V.* Muthuraj², *A.* Elangovan⁵, *S.* Kulandaivel⁶

¹ Department of Chemical Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC.

² Department of chemistry, VHNSN College, Virudhunagar – 626001, Tamilnadu, India.

³ Chemistry Division, Center for General Education, Chang Gung University, Taoyuan 333, Taiwan, ROC.

⁴ Department of Nuclear Medicine and Molecular Imaging Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan, ROC.

⁵ Department of chemistry, Thiagarajar College, Madurai-625009, Tamilnadu, India.

⁶ Department of Zoology & Microbiology, Thiagarajar College, Madurai-625009, Tamilnadu, India. *E-mail: <u>smchen78@ms15.hinet.net</u>, <u>blou@mail.cgu.edu.tw</u>

doi: 10.20964/2017.02.61

Received: 11 October 2016 / Accepted: 19 December 2016 / Published: 30 December 2016

A simple, facile, eco-friendly and rapid synthesis of gold nanoparticles (GNPs) derived from *B. javanica Blume* leaves extract (BJBLE) was successfully developed. The GNPs were formed within 40 sec and it was confirmed by UV-visible spectroscopy. The BJBLE acts as a (strong) reducing and (as well as) stabilizing agent. The Chemical constituents of BJBLE were studied by GC-MS. The prepared GNPs are spherical in shape and the particles size around 25 nm, which was confirmed by HR-TEM. The formation of GNPs and interaction between the plant extract was characterized by XRD and FT-IR. One step preparation of graphene oxide encapsulated GNPs (GO/GNPs) was confirmed by SEM and EDX spectrum. The electrochemical activities of the GO/GNPs modified electrode were characterized by CVs and DPV. The electrochemical results demonstrate notable electrocatalytic activity of the GO/GNPs modified glassy carbon electrode (GCE) towards dopamine detection. The GO/GNPs modified GCE displayed a wide linear range with a low detection limit of 0.03 μ M and good selectivity towards dopamine even in the presence of biologically co-interfering substances. The above results suggested that the GO/GNPs modified GCE is very promising and active electrode material for the detection of dopamine for pharmaceutical and clinical applications.

Keywords: Gold nanoparticles, Graphene oxide, B. javanica Blume, Dopamine.

FULL TEXT

© 2017 The Authors. Published by ESG (<u>www.electrochemsci.org</u>). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).