Facile and Rapid Synthesis of Microwave Assisted Pd Nanoparticles as Non-Enzymatic Hydrogen Peroxide Sensor

Ozlem Sahin^{1,}, Hilal Kivrak², Arif Kivrak³, Hilal Çelik Kazıcı², Orhan Alal², Dilan Atbas²*

¹Chemical Engineering Department, Selcuk University, 42031, Konya Turkey ²Chemical Engineering Department, Yüzüncü Yıl University, 65081, Van Turkey ³Department of Chemistry, Yüzüncü Yıl University, 65081, Van Turkey

*E-mail: <u>hilalkivrak@gmail.com</u>, <u>hilalkivrak@yyu.edu.tr</u>

doi: 10.20964/2017.01.26

Received: 18 May 2016 / Accepted: 29 October 2016 / Published: 12 December 2016

Carbon supported Pd catalyst was prepared with microwave-assisted polyol method (M-Pd@C) and investigated sensing activity for non-enzymatic hydrogen peroxide (H₂O₂). Moreover, M-Pd@C and Pd@C catalyst which synthesized via polyol method (P-Pd@C) were compared to each other in terms of electrocatalytic activity. X-ray diffraction (XRD), X-ray photo electron spectroscopy (XPS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to investigate structural and morphological properties of these catalysts. Furthermore, electrochemical measurements were performed via cyclic voltammetry (CV), chronoamperometry (CA) techniques. CV results exhibited that M-Pd/C catalyst showed perfect electrocatalytic activity in terms of reduction of H₂O₂. M-Pd/C catalyst showed a fast response of less than 7 s with a linear range of 5.0×10^{-3} -11.0 mM and a relatively low detection limit of 1.2 µM amperometric response. M-Pd/C catalyst exhibited great selectivity for detecting H₂O₂ in the existence of several hindering species such as uric acid and ascorbic acid.

Keywords: Pd nanoparticles, microwave assisted polyol method, non-enzymatic, hydrogen peroxide sensor

FULL TEXT

© 2017 The Authors. Published by ESG (<u>www.electrochemsci.org</u>). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).