Electrodeposition of Ni, Fe and Ni-Fe Alloys in Two Ionic Liquids: (tri (n-butyl) [2-methoxy-2-oxoethyl] Ammonium bis (trifluoromethylsulfonyl) [BuGBOEt] [Tf₂N] and (1-butyl-1methylpyrrolidinium bis trifluoromethylsulfonyl) imide ([$P_{1,4}$] [Tf₂N])

Rafik Maizi^{1,*}, Patrick Fricoteaux², Aminou Mohamadou³, Athmane Meddour¹, Céline Rousse^{3,*}

¹Laboratoire de physique des matériaux L2PM, Université du 8 mai 1945 Guelma, B.P 401, 24000 Guelma, Algérie.

² LISM EA 4695, UFR Sciences Exactes et Naturelles, B.P.1039, 51687 Reims Cedex 02, France.
³ ICMR UMR CNRS 7312, UFR Sciences Exactes et Naturelles, B.P.1039, 51687 Reims Cedex 02, France.

*E-mail: <u>rmaizi24@gmail.com</u> <u>celine.rousse@univ-reims.fr</u>

doi: 10.20964/2016.08.70

Received: 23 April 2016 / Accepted: 21 June 2016 / Published: 7 July 2016

Ni, Fe and Ni-Fe alloys electrodeposition were tested in two ionic liquids. The first one is a commercial (1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ($[P_{1,4}][Tf_2N]$)) and the second homemade (tri(*n*-butyl)[2-ethoxy-2oxoethyl]ammonium is a bis (trifluoromethylsulfonyl)imide([BuGBOEt][Tf₂N])). Covering iron deposits was obtained in the $[BuGBOEt][Tf_2N]$. Nickel deposition was only possible in the $[P_{14}][Tf_2N]$. Ni-Fe alloys were obtained from the $[P_{1,4}][Tf_2N]$ solvent. The study of the evolution of alloys composition versus polarisation shows irregular evolution depending on the applied potential. The alloys composition varies approximately between Ni₇₀-Fe₃₀ and Ni₉₀-Fe₁₀ for applied potentials including to - 1.8 V and - 4 V versus Ni electrode. The chemical composition, the surface morphology and the structure, of deposits were characterized by scanning electron microscopy (SEM), energy dispersive analysis (EDX) and Xray diffraction (XRD).

Keywords: Fe; Ni; Ni-Fe alloys; Electrodeposition; Ionic liquids

FULLTEXT

© 2016 The Authors. Published by ESG (<u>www.electrochemsci.org</u>). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).